Covid-19 treatment by plant compounds

  • Sargol Mazraedoost
  • Gity Behbudi
  • Seyyed Mojtaba Mousavi
  • Seyyed Alireza Hashemi
Keywords: Phytochemicals against; Herbal Medicines; Severe Acute Respiratory Syndrome; COVID-19; MERS-CoV; SARS-CoV.

Abstract

The COVID-19 pandemic is a global public health epidemic, with significant mortality and morbidity, including critical care, putting a strain on health care services. In the city of Wuhan, China, a novel coronavirus called SARS-CoV-2 appeared at the end of 2019, causing an outbreak of unusual viral pneumonia. A type of coronavirus disease belonging to the family Coronaviridae is COVID-19. Moreover, the disease's symptoms include fever, dry cough, tiredness. It is possible to foresee numerous options to monitor or avoid emerging 2019-nCoV infections, including small-molecule drugs, interferon therapies, and Vaccines. Novel interventions may take a long time.

Downloads

Download data is not yet available.

References

1. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine. 2012;367(19):1814-20.
2. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution. 2020;79:104212.
3. Silveira D, Prieto-Garcia JM, Boylan F, Estrada O, Fonseca-Bazzo YM, Jamal CM, et al. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Frontiers in Pharmacology. 2020;11:1479.
4. Panyod S, Ho C-T, Sheen L-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. Journal of Traditional and Complementary Medicine. 2020.
5. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology. 2020;92(4):418-23.
6. Mousavi SM, Hashemi SA, Parvin N, Gholami A, Ramakrishna S, Omidifar N, et al. Recent Biotechnological Approaches for Treatment of Novel COVID-19: From Bench to Clinical Trial. Drug Metabolism Reviews. 2020:1-75.
7. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection. 2020.
8. Hashemi SA, Behbahan NGG, Bahrani S, Mousavi SM, Gholami A, Ramakrishna S, et al. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosensors and Bioelectronics. 2020;171:112731.
9. Chen Z, Nakamura T. Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2004;18(7):592-4.
10. Chen F, Chan K, Jiang Y, Kao R, Lu H, Fan K, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology. 2004;31(1):69-75.
11. Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology. 2006;33(7):612-6.
12. Kim H-Y, Eo E-Y, Park H, Kim Y-C, Park S, Shin H-J, et al. Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir Ther. 2010;15(5):697-709.
13. Kim DE, Min JS, Jang MS, Lee JY, Shin YS, Park CM, et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules. 2019;9(11):696.
14. Li BQ, Fu T, Dongyan Y, Mikovits JA, Ruscetti FW, Wang JM. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochemical and biophysical research communications. 2000;276(2):534-8.
15. Li X-Q, Song Y-N, Wang S-J, Rahman K, Zhu J-Y, Zhang H. Saikosaponins: a review of pharmacological effects. Journal of Asian natural products research. 2018;20(5):399-411.
16. Lin C-W, Tsai F-J, Tsai C-H, Lai C-C, Wan L, Ho T-Y, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research. 2005;68(1):36-42.
17. McCutcheon A, Roberts T, Gibbons E, Ellis S, Babiuk L, Hancock R, et al. Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology. 1995;49(2):101-10.
18. Tsai Y-C, Lee C-L, Yen H-R, Chang Y-S, Lin Y-P, Huang S-H, et al. Antiviral action of Tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules. 2020;10(3):366.
19. Silva Júnior JVJ, Lopes TRR, de Oliveira PSB, Weiblen R, Flores EF. Issues on Coronavirus Disease 2019 (COVID-19) Pathogenesis. Viral Immunology. 2020.
20. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, et al. Antiviral Activity of Glycyrrhizic Acid Derivatives against SARS− Coronavirus. Journal of medicinal chemistry. 2005;48(4):1256-9.
21. Li S-y, Chen C, Zhang H-q, Guo H-y, Wang H, Wang L, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research. 2005;67(1):18-23.
22. Wu C-Y, Jan J-T, Ma S-H, Kuo C-J, Juan H-F, Cheng Y-SE, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences. 2004;101(27):10012-7.
23. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet. 2003;361(9374):2045-6.
24. Kitamura K, Honda M, Yoshizaki H, Yamamoto S, Nakane H, Fukushima M, et al. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral research. 1998;37(2):131-40.
25. Boukhatem MN, Setzer WN. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: Future perspectives. Plants. 2020;9(6):800.
26. O'Keefe BR, Giomarelli B, Barnard DL, Shenoy SR, Chan PK, McMahon JB, et al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. Journal of virology. 2010;84(5):2511-21.
27. Weng J-R, Lin C-S, Lai H-C, Lin Y-P, Wang C-Y, Tsai Y-C, et al. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus research. 2019;273:197767.
28. Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh J-W, Cho JK, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of enzyme inhibition and medicinal chemistry. 2014;29(1):59-63.
29. Park J-Y, Yuk HJ, Ryu HW, Lim SH, Kim KS, Park KH, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of enzyme inhibition and medicinal chemistry. 2017;32(1):504-12.
30. Ryu YB, Jeong HJ, Kim JH, Kim YM, Park J-Y, Kim D, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & medicinal chemistry. 2010;18(22):7940-7.
31. Park J-Y, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorganic & medicinal chemistry. 2012;20(19):5928-35.
32. Lau K-M, Lee K-M, Koon C-M, Cheung CS-F, Lau C-P, Ho H-M, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology. 2008;118(1):79-85.
33. Luo W, Su X, Gong S, Qin Y, Liu W, Li J, et al. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Bioscience trends. 2009;3(4).
34. Yu M-S, Lee J, Lee JM, Kim Y, Chin Y-W, Jee J-G, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & medicinal chemistry letters. 2012;22(12):4049-54.
35. Zhuang M, Jiang H, Suzuki Y, Li X, Xiao P, Tanaka T, et al. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral research. 2009;82(1):73-81.
36. Loizzo MR, Saab AM, Tundis R, Statti GA, Menichini F, Lampronti I, et al. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chemistry & biodiversity. 2008;5(3):461-70.
37. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of virology. 2004;78(20):11334-9.
38. Stawicki SP, Jeanmonod R, Miller AC, Paladino L, Gaieski DF, Yaffee AQ, et al. The 2019–2020 novel coronavirus (severe acute respiratory syndrome coronavirus 2) pandemic: A joint american college of academic international medicine-world academic council of emergency medicine multidisciplinary COVID-19 working group consensus paper. Journal of global infectious diseases. 2020;12(2):47.
39. Michaelis M, Doerr HW, Cinatl Jr J. Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine. 2011;18(5):384-6.
40. Thabti I, Albert Q, Philippot S, Dupire F, Westerhuis B, Fontanay S, et al. Advances on Antiviral Activity of Morus spp. Plant Extracts: Human Coronavirus and Virus-Related Respiratory Tract Infections in the Spotlight. Molecules. 2020;25(8):1876.
41. Wen C-C, Shyur L-F, Jan J-T, Liang P-H, Kuo C-J, Arulselvan P, et al. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. Journal of traditional and complementary medicine. 2011;1(1):41-50.
42. Yang Q-Y, Tian X-Y, Fang W-S. Bioactive coumarins from Boenninghausenia sessilicarpa. Journal of Asian natural products research. 2007;9(1):59-65.
43. Graebin CS. The pharmacological activities of glycyrrhizinic acid (“glycyrrhizin”) and glycyrrhetinic acid. Sweeteners. 2018:245.
44. Tsuchiya Y, SHIMIZU M, HIYAMA Y, ITOH K, HASHIMOTO Y, NAKAYAMA M, et al. Antiviral activity of natural occurring flavonoids in vitro. Chemical and pharmaceutical bulletin. 1985;33(9):3881-6.
45. Clark K, Grant P, Sarr A, Belakere J, Swaggerty C, Phillips T, et al. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Veterinary microbiology. 1998;63(2-4):147-57.
46. Yang GY, Liu Z, Seril DN, Liao J, Ding W, Kim S, et al. Black tea constituents, theaflavins, inhibit 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. Carcinogenesis. 1997;18(12):2361-5.
47. Parthasarathy K, Ng L, Lin X, Liu DX, Pervushin K, Gong X, et al. Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel. Biophysical journal. 2008;95(6):L39-L41.
48. Notka F, Meier G, Wagner R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral research. 2004;64(2):93-102.
49. Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral research. 2012;94(3):258-71.
50. Jassim SAA, Naji MA. Novel antiviral agents: a medicinal plant perspective. Journal of applied microbiology. 2003;95(3):412-27.
51. Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P. Virucidal activity of a β-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta medica. 2005;71(12):1123-7.
52. Schnitzler P, Koch C, Reichling J. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrobial agents and chemotherapy. 2007;51(5):1859-62.

53. Tech JET. Investigating the Activity of Antioxidants Activities Content in Apiaceae and to Study Antimicrobial and Insecticidal Activity of Antioxidant by using SPME Fiber Assembly Carboxen/Polydimethylsiloxane (CAR/PDMS). Journal of Environmental Treatment Techniques. 2020;8(1):214-24.
54. Zhu H, Zhang Y, Ye G, Li Z, Zhou P, Huang C. In vivo and in vitro antiviral activities of calycosin-7-O-β-D-glucopyranoside against coxsackie virus B3. Biological and Pharmaceutical Bulletin. 2009;32(1):68-73.
55. Wen C-C, Kuo Y-H, Jan J-T, Liang P-H, Wang S-Y, Liu H-G, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of medicinal chemistry. 2007;50(17):4087-95.
56. Yuan S, Piao X, Li D, Kim S, Lee H, Guo P. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs. Animal Science. 2006;82(4):501-7.
57. Chen C-N, Lin CP, Huang K-K, Chen W-C, Hsieh H-P, Liang P-H, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3'-digallate (TF3). Evidence-Based Complementary and Alternative Medicine. 2005;2.
58. Ho T-Y, Wu S-L, Chen J-C, Li C-C, Hsiang C-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral research. 2007;74(2):92-101.
59. Kumar V, Tan K-P, Wang Y-M, Lin S-W, Liang P-H. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorganic & medicinal chemistry. 2016;24(13):3035-42.
60. Chu X, Ci X, Wei M, Yang X, Cao Q, Guan M, et al. Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. Journal of agricultural and food chemistry. 2012;60(15):3947-54.
61. Speranza L, Franceschelli S, Pesce M, Reale M, Menghini L, Vinciguerra I, et al. Antiinflammatory effects in THP‐1 cells treated with verbascoside. Phytotherapy Research. 2010;24(9):1398-404.
62. Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X, et al. Antiviral Activity Against Infectious Bronchitis Virus and Bioactive Components of Hypericum perforatum L. Frontiers in pharmacology. 2019;10:1272.
63. Chen C, Zuckerman DM, Brantley S, Sharpe M, Childress K, Hoiczyk E, et al. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC veterinary research. 2014;10(1):1-12.
64. Sun Q, Chen L, Gao M, Jiang W, Shao F, Li J, et al. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB. International Immunopharmacology. 2012;12(1):88-93.
65. Shen L, Niu J, Wang C, Huang B, Wang W, Zhu N, et al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. Journal of virology. 2019;93(12).
66. Ojah EO. Exploring essential oils as prospective therapy against the ravaging Coronavirus (SARS-CoV-2). Iberoamerican Journal of Medicine. 2020;2(4):322-30.
67. Djilani A, Dicko A. The therapeutic benefits of essential oils. Nutrition, well-being and health. 2012;7:155-79.
68. Griffin SG, Wyllie SG, Markham JL, Leach DN. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour and Fragrance Journal. 1999;14(5):322-32.
69. Halder D, Barik B, Dasgupta R, Saumendu D. Aroma therapy: An art of healing. Indian Research Journal of Pharmacy and Science. 2018;17:1540-58.
70. Margaris NS, Koedam A, Margaris M, Vokou D. Aromatic plants: basic and applied aspects: proceedings of an international symposium on aromatic plants. Springer Science & Business Media; 1982.
71. Mumme KD, von Hurst PR, Conlon CA, Jones B, Haskell-Ramsay CF, Stonehouse W, et al. Study protocol: associations between dietary patterns, cognitive function and metabolic syndrome in older adults–a cross-sectional study. BMC Public Health. 2019;19(1):535.
72. Adjorjan B, Buchbauer G. Biological properties of essential oils: an apdated review. Flav Fragr J. 2010;25:407-26.
Published
2021-03-20
How to Cite
1.
Mazraedoost S, Behbudi G, Mousavi SM, Hashemi SA. Covid-19 treatment by plant compounds. AANBT [Internet]. 20Mar.2021 [cited 18Apr.2024];2(1):23-. Available from: https://www.dormaj.org/index.php/AANBT/article/view/118