Effect of Dielectric Barrier Discharge (DBD) Plasma treatment on the Polypropylene film in presence of air and nitrogen at atmospheric pressure

  • Hossein Azimi
  • Mitra Tavakoli
  • Mehdi Sharifian
Keywords: DBD Plasma, Surface Modification, Polypropylene, Water contact angle, AFM, DRS.


The plasma treatment is an efficient method used for improving wettability of the polymer film surface and increasing the surface roughness. In this paper, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) Plasma in the presence of air and nitrogen separately at atmospheric pressure. The plasma-modified surfaces are characterized by contact angle measurements, Atomic Force Microscopy (AFM) and Diffuse Reflectance Spectroscopy (DRS). Results show a remarkable increase in hydrophilicity due to the implantation of oxygen and nitrogen containing groups in these modified polypropylene films. Atomic oxygen, atomic nitrogen, OH radicals, and ions, which are presented in the discharge, create radicals at the polymer surface, which can react with oxygen and nitrogen species, resulting in formation of oxygen and nitrogen containing functionalities on the polymer surface. It is shown that plasma in the nitrogen atmosphere is more efficient in etching and implanting functionalities than air plasma.


1. Mittal KL, Pizzi A. Adhesion promotion techniques: technological applications. CRC press; 1999.
2. Mousavi SM, Hashemi SA, Jahandideh S, Baseri S, Zarei M, Azadi S. Modification of phenol novolac epoxy resin and unsaturated polyester using sasobit and silica nanoparticles. Polymers from Renewable Resources. 2017;8(3):117-32.
3. Goudarzian N, Amini P, Mousavi S, Hashemi S. Modification of physical, mechanical and electrical properties of reinforced epoxy phenol novolac with nano cobalt acrylate and carbon nanotubes. Progress in Rubber Plastics and Recycling Technology. 2018;34(2):105-14.
4. Chan CM. Polymer surface modification and characterization. 1993.
5. Mousavi S, Esmaeili H, Arjmand O, Karimi S, Hashemi S. Biodegradation study of nanocomposites of phenol novolac epoxy/unsaturated polyester resin/egg shell nanoparticles using natural polymers. Journal of Materials. 2015;2015:1-6.
6. Clouet F, Shi M. Interactions of polymer model surfaces with cold plasmas: Hexatriacontane as a model molecule of high‐density polyethylene and octadecyl octadecanoate as a model of polyester. I. Degradation rate versus time and power. Journal of applied polymer science. 1992;46(11):1955-66.
7. Foerch R, Kill G, Walzak M. Plasma surface modification of polyethylene: short-term vs. long-term plasma treatment. Journal of adhesion science and technology. 1993;7(10):1077-89.
8. Földes E, Tóth A, Kálmán E, Fekete E, Tomasovszky–Bobák á. Surface changes of corona‐discharge‐treated polyethylene films. Journal of applied polymer science. 2000;76(10):1529-41.
9. Lynch JB, Spence PD, Baker DE, Postlethwaite TA. Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air. Journal of applied polymer science. 1999;71(2):319-31.
10. Takahashi N, Goldman A, Goldman M, Rault J. Surface modification of LDPE by a DC corona discharge generated in a point-to-grid system: the influence of geometric parameters of the system on modification power. Journal of Electrostatics. 2000;50(1):49-63.
11. Wells R, Badyal J, Drummond I, Robinson K, Street F. Plasma oxidation of polystyrene vs. polyethylene. Journal of adhesion science and technology. 1993;7(10):1129-37.
12. Mousavi S, Aghili A, Hashemi S, Goudarzian N, Bakhoda Z, Baseri S. Improved morphology and properties of nanocomposites, linear low density polyethylene, ethylene-co-vinyl acetate and nano clay particles by electron beam. Polymers from Renewable Resources. 2016;7(4):135-53.
13. Banaei N, Ahmadi S. High-density polyethylene surface modification for the attachment of Eggshell and Oak Bark Nanoparticles. Advances in Applied NanoBio-Technologies. 2020;1(3):67-71.
14. Ishikawa S, Yukimura K, Matsunaga K, Maruyama T. Surface modification of poly (tetrafluoroethylene) film using dielectric barrier discharge of intermittent pulse voltage. Japanese Journal of Applied Physics. 2000;39(9R):5223.
15. Egitto F, Matienzo L, Blackwell K, Knoll A. Oxygen plasma modification of polyimide webs: effect of ion bombardment on metal adhesion. Journal of adhesion science and technology. 1994;8(4):411-33.
16. Seeböck R, Esrom H, Charbonnier M, Romand M. Modification of polyimide in barrier discharge air-plasmas: chemical and morphological effects. Plasmas and polymers. 2000;5(2):103-18.
17. Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. Artificial cells, nanomedicine, and biotechnology. 2019;47(1):1132-48.
18. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S. Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes as ultrasensitive electrochemical sensor for precise detection of 4-nitrophenol within aquatic media. Journal of Electroanalytical Chemistry. 2020;873:114406.
19. Hofrichter A, Bulkin P, Drévillon B. Plasma treatment of polycarbonate for improved adhesion. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2002;20(1):245-50.
20. Biederman H, Slavinska D, Boldyreva H, Lehmberg H, Takaoka G, Matsuo J, et al. Modification of polycarbonate and polypropylene surfaces by argon ion cluster beams. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2001;19(6):2050-6.
21. Amani AM, Hashemi SA, Mousavi SM, Abrishamifar SM, Vojood A. Electric field induced alignment of carbon nanotubes: methodology and outcomes. Carbon nanotubes-recent progress. IntechOpen; 2017.
22. Shenton M, Lovell-Hoare M, Stevens G. Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D: Applied Physics. 2001;34(18):2754.
23. Liu C, Cui N, Brown NM, Meenan BJ. Effects of DBD plasma operating parameters on the polymer surface modification. Surface and Coatings Technology. 2004;185(2-3):311-20.
24. Mousavi S, Arjmand O, Hashemi S, Banaei N. Modification of the epoxy resin mechanical and thermal properties with silicon acrylate and montmorillonite nanoparticles. Polymers from Renewable Resources. 2016;7(3):101-13.
25. Hashemi SA, Mousavi SM, Ramakrishna S. Effective removal of mercury, arsenic and lead from aqueous media using Polyaniline-Fe3O4-silver diethyldithiocarbamate nanostructures. Journal of Cleaner Production. 2019;239:118023.
26. Mousavi SM, Hashemi SA, Amani AM, Saed H, Jahandideh S, Mojoudi F. Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polymers from Renewable Resources. 2017;8(4):177-96.
27. Carman R, Mildren R. Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges. Journal of Physics D: Applied Physics. 2000;33(19):L99.
28. Chen X, Wang X, Fang D. A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes, Nanotubes and Carbon Nanostructures. 2020;28(12):1048-58.
29. Mousavi S, Arjmand O, Talaghat M, Azizi M, Shooli H. Modifying the properties of polypropylene-wood composite by natural polymers and eggshell Nano-particles. Polymers from Renewable Resources. 2015;6(4):157-73.
30. Novak I, Florián Š. Investigation of long-term hydrophobic recovery of plasma modified polypropylene. Journal of materials science. 2004;39(6):2033-6.
31. Šíra M, Trunec D, Stahel P, Buršíková V, Navrátil Z, Buršík J. Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge. Journal of physics D: Applied physics. 2005;38(4):621.
32. Schirmer RE. Modern methods of pharmaceutical analysis. CRC press; 1990.