Manufacturing and Properties of Poly Vinyl Alcohol/Fibrin Nanocomposite Used for Wound Dressing

  • Fahime Sadat Hoseini Shahrood University of Technology, Shahrood, Iran.
  • Reza Taherian Shahrood University of Technology, Shahrood, Iran.
  • Amir Atashi University of Medical Sciences, Shahrood, Iran.
Keywords: Adhesive; Biomaterial; Wound Treating; Electrospinning; Nanocomposites


The purpose of this study is to make PVA/fibrin nanocomposite with suitable mechanical and biological properties to be used in wound dressing. Characterizations are performed by SEM, microculture Tetrazolium Test (MTT), tensile strength, contact angle, and DAPI coloring. Low, medium and high Concentrations of fibrinogen and thrombin were injected into the scaffolds by electrophoresis method. The tensile strength test of scaffolds shows that the ultimate tensile strength and fracture strain are 4.06 MPa and 0.93, respectively. Wettability and SEM tests show an increase in hydrophobicity by the addition of fibrin to the scaffolds. The DAPI coloring test or cell adhesion test also indicates an increase in cell adhesion of scaffolds contained fibrin in comparison to scaffolds without fibrin. MTT test for 4 days shows a better cell proliferation in the PVA/fibrin composites as compared to PVA scaffolds results Showed that PVA/fibrin nanocomposite could be used for tissue engineering applications as a wound dressing in animal models.

Author Biographies

Fahime Sadat Hoseini, Shahrood University of Technology, Shahrood, Iran.

Faculty of Materials Science & Engineering

Reza Taherian, Shahrood University of Technology, Shahrood, Iran.

Faculty of Materials Science & Engineering

Amir Atashi, University of Medical Sciences, Shahrood, Iran.

School of Medicine


1. Hu MS, Leavitt T, Malhotra S, Duscher D, Pollhammer MS, Walmsley GG, et al. Stem cell-based therapeutics to improve wound healing. Plastic surgery international. 2015;2015.
2. Bergel S. Ueber wirkungen des fibrins. Dtsch Med Wochenschr. 1909;35:663-5.
3. Kazemzadeh-Narbat M, Annabi N, Khademhosseini A. Surgical sealants and high strength adhesives. Materials Today. 2015;18(4):176-7.
4. Bhat YM, Banerjee S, Barth BA, Chauhan SS, Gottlieb KT, Konda V, et al. Tissue adhesives: cyanoacrylate glue and fibrin sealant. Gastrointestinal endoscopy. 2013;78(2):209-15.
5. Lauto A, Mawad D, Foster LJR. Adhesive biomaterials for tissue reconstruction. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology. 2008;83(4):464-72.
6. Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee BP. Injectable dopamine-modified poly (ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS applied materials & interfaces. 2014;6(19):16982-92.
7. Lopes MS, Jardini A, Maciel Filho R. Poly (lactic acid) production for tissue engineering applications. Procedia Engineering. 2012;42:1402-13.
8. Mobley SR, Hilinski J, Toriumi DM. Surgical tissue adhesives. Facial Plastic Surgery Clinics. 2002;10(2):147-54.
9. Ahmadi S. Phenol Novalac Epoxy-modified unsaturated polyester hybrid networks by Silica Nanoparticles/and Cross linking with Silane Compounds. Advances in Applied NanoBio-Technologies. 2020;1(2):28-32.
10. Annabi N, Mithieux SM, Zorlutuna P, Camci-Unal G, Weiss AS, Khademhosseini A. Engineered cell-laden human protein-based elastomer. Biomaterials. 2013;34(22):5496-505.
11. Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The lancet. 1999;354:S32-S4.
12. Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414(6859):118-21.
13. Celikkin N, Simó Padial J, Costantini M, Hendrikse H, Cohn R, Wilson CJ, et al. 3D printing of thermoresponsive polyisocyanide (PIC) hydrogels as bioink and fugitive material for tissue engineering. Polymers. 2018;10(5):555.
14. Korsmeyer RW, Peppas NA. Effect of the morphology of hydrophilic polymeric matrices on the diffusion and release of water soluble drugs. Journal of membrane Science. 1981;9(3):211-27.
15. Bahrani S, Hashemi SA, Mousavi SM, Azhdari R. Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug metabolism reviews. 2019;51(3):356-77.
16. Hassan CM, Peppas NA. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers• PVA Hydrogels, Anionic Polymerisation Nanocomposites. Springer; 2000. p. 37-65.
17. Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang W-H, Lai CW, et al. Asymmetric Membranes: A Potential Scaffold for Wound Healing Applications. Symmetry. 2020;12(7):1100.
18. Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM. Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids. 2014;35:463-70.
19. Muppalaneni S, Omidian H. Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs. 2013;2(3):1-5.
20. Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS. Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of chemistry. 2015;8(1):1-14.
21. Ryu JH, Kim I-K, Cho S-W, Cho M-C, Hwang K-K, Piao H, et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials. 2005;26(3):319-26.
22. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, The Journal of the American Society of Hematology. 2001;98(8):2396-402.
23. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell. 2002;13(12):4279-95.
24. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem cells. 2004;22(7):1330-7.
25. Kim J, Lee Y, Kim H, Hwang K, Kwon H, Kim S, et al. Human amniotic fluid‐derived stem cells have characteristics of multipotent stem cells. Cell proliferation. 2007;40(1):75-90.
26. Malhotra S, Hu MS, Marshall CD, Leavitt T, Cheung A, Gonzalez JG, et al. Mesenchymal stromal cells as cell-based therapeutics for wound healing. Stem cells international. 2016;2016.
27. Valbonesi M, Giannini G, Migliori F, Dalla Costa R, Galli A. The role of autologous fibrin-platelet glue in plastic surgery: a preliminary report. SAGE Publications Sage UK: London, England; 2002.
28. Le Guéhennec L, Layrolle P, Daculsi G. A review of bioceramics and fibrin sealant. Eur Cell Mater. 2004;8(13):1e11.
29. Spangler H. Die lokale Anwendung von Fibrinogen und Kollagen zur Blutstillung in der Herzchirurgie. 1976.
30. Correia V, Panadero J, Ribeiro C, Sencadas V, Rocha J, Ribelles JG, et al. Design and validation of a biomechanical bioreactor for cartilage tissue culture. Biomechanics and modeling in mechanobiology. 2016;15(2):471-8.
31. Bidault L, Deneufchatel M, Vancaeyzeele Cd, Fichet O, Larreta-Garde Vr. Self-supported fibrin-polyvinyl alcohol interpenetrating polymer networks: an easily handled and rehydratable biomaterial. Biomacromolecules. 2013;14(11):3870-9.
32. Destaye AG, Lin C-K, Lee C-K. Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles. ACS applied materials & interfaces. 2013;5(11):4745-52.
33. Afghan N. Mechanical Properties of Poly (vinyl alcohol) Based Blends and Composites. 2016.
34. Finlay JA, Callow ME, Ista LK, Lopez GP, Callow JA. The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integrative and comparative biology. 2002;42(6):1116-22.
35. Mousavi S, Zarei M, Hashemi S. Polydopamine for biomedical application and drug delivery system. Med Chem (Los Angeles). 2018;8:218-29.
36. Tzoneva R, Faucheux N, Groth T. Wettability of substrata controls cell–substrate and cell–cell adhesions. Biochimica et Biophysica Acta (BBA)-General Subjects. 2007;1770(11):1538-47.
37. Van Oss C. Surface properties of fibrinogen and fibrin. Journal of protein chemistry. 1990;9(4):487-91.
38. Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta biomaterialia. 2017;47:14-24.
39. Merkle VM, Tran PL, Hutchinson M, Ammann KR, DeCook K, Wu X, et al. Core–shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration. Acta biomaterialia. 2015;27:77-87.
40. Perumcherry SR, Chennazhi KP, Nair SV, Menon D, Afeesh R. A novel method for the fabrication of fibrin-based electrospun nanofibrous scaffold for tissue-engineering applications. Tissue Engineering Part C: Methods. 2011;17(11):1121-30.
41. Le Nihouannen D, Le Guehennec L, Rouillon T, Pilet P, Bilban M, Layrolle P, et al. Micro-architecture of calcium phosphate granules and fibrin glue composites for bone tissue engineering. Biomaterials. 2006;27(13):2716-22.
42. De Faveri S, Maggiolini E, Miele E, De Angelis F, Cesca F, Benfenati F, et al. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Frontiers in neuroengineering. 2014;7:7.
43. Dai Y, Liu G, Ma L, Wang D, Gao C. Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects. Journal of Materials Chemistry B. 2016;4(25):4410-9.
44. Grandcolas M, Rival N, Landsem E, Simon C. Preparation of POSS-based PVA and PLA nanofibers using needleless electrospinning. Tech J Engin & App Sci. 2016;6:24-7.
45. Nagarkar R, Patel J. Polyvinyl alcohol: A comprehensive study. Acta Scientific Pharmaceutical Sciences. 2019;3(4):34-44.
46. El-Hammadi MM, Arias JL. Nanotechnology for Vaginal Drug Delivery and Targeting. Nanotechnology and Drug Delivery, Volume Two: Nano-Engineering Strategies and Nanomedicines against Severe Diseases. 2016:191.