Nano materials-based devices by photodynamic therapy for treating cancer applications

  • Sargol Mazraedoost Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
  • Gity Behbudi Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Keywords: Photodynamic Therapy (PDT), Cancer, Nanotechnology, Drug Delivery Systems

Abstract

      Photodynamic therapy (PDT) is a non-invasive beneficial modality that is able to be used instead of radiotherapy and chemotherapy to treat cancer. Low water solubility makes administering photosensitizers (PSs) complicated, which undermines several molecules' medicinal application, limits PDT's efficacy. Nanotechnology can be used to tune the photoactive drug's pharmacokinetics and tumor selectivity and perform a vital role in the photosensitizer's photodynamic function by maintaining the photosensitizer's monomeric structure and thereby optimizing the photochemistry that occurs upon photon absorption. Also, nanotechnology-based drug delivery systems may progress a PS's transcytosis by allowing two or different drugs to be delivered at the same time via epithelial and endothelial barriers. Based on this, nanotechnology's application in medicine could open up a slew of novel cancer treatment possibilities while also improving the efficacy of presently available medicines. Consequently, this research aims to investigate nanotechnology-based medication conveyance instruments utilized for photodynamic cancer treatment.

References

1. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA: a cancer journal for clinicians. 2011;61(4):250-81.
2. Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. Artificial cells, nanomedicine, and biotechnology. 2019;47(1):1132-48.
3. Gholami A, Mousavi SM, Hashemi SA, Ghasemi Y, Chiang W-H, Parvin N. Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metabolism Reviews. 2020;52(1):205-24.
4. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature reviews cancer. 2003;3(5):380-7.
5. Vrouenraets MB, Visser G, Snow GB, Van Dongen G. Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer research. 2003;23(1B):505-22.
6. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. JNCI: Journal of the national cancer institute. 1998;90(12):889-905.
7. Goyan R, Pottier R. New directions in photodynamic therapy. Cellular and molecular biology (Noisy-le-Grand, France). 2002;48(8):939-54.
8. Spikes JD. The historical development of ideas on applications of photosensitized reactions in the health sciences. Primary photo-processes in biology and medicine. Springer; 1985. p. 209-27.
9. Raab O. Uber die wirkung fluorescirender stoffe auf infusorien. Z biol. 1900;39:524-46.
10. Von Tappeiner H. Therapeutische versuche mit fluoreszierenden stoffen. Munch Med Wochenschr. 1903;1:2042-4.
11. Mroz P, Hashmi JT, Huang Y-Y, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert review of clinical immunology. 2011;7(1):75-91.
12. Mousavi SM, Soroshnia S, Hashemi SA, Babapoor A, Ghasemi Y, Savardashtaki A, et al. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug metabolism reviews. 2019;51(1):91-104.
13. Lim ME, Lee Y-l, Zhang Y, Chu JJH. Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials. 2012;33(6):1912-20.
14. Masoumzade R, Behbudi G, Mazraedoost S. A medical encyclopedia with new approach graphene quantum dots for anti-breast cancer applications: mini review. Advances in Applied NanoBio-Technologies. 2020;1(4):84-90.
15. Calixto GMF, Bernegossi J, De Freitas LM, Fontana CR, Chorilli M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21(3):342.
16. Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections: clinical applications. Lasers in surgery and medicine. 2011;43(7):755-67.
17. Machado AEdH. Terapia fotodinâmica: princípios, potencial de aplicação e perspectivas. Química Nova. 2000;23(2):237-43.
18. Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines. 2001;5(02):105-29.
19. Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clinical endoscopy. 2013;46(1):24.
20. Gholami A, Hashemi SA, Yousefi K, Mousavi SM, Chiang W-H, Ramakrishna S, et al. 3D nanostructures for tissue engineering, cancer therapy, and gene delivery. Journal of Nanomaterials. 2020;2020.
21. Van Straten D, Mashayekhi V, De Bruijn HS, Oliveira S, Robinson DJ. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers. 2017;9(2):19.
22. Ahmadi S. Nanoparticles induced oxidative stress and related effects especially under exposure to electromagnetic radiations. Advances in Applied NanoBio-Technologies. 2020;1(4):91-8.
23. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S, Babapoor A, Chiang W-H. Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Analytica chimica acta. 2020;1107:183-92.
24. Wilson BC. Photodynamic therapy for cancer: principles. Canadian journal of gastroenterology. 2002;16(6):393-6.
25. Tech JET. Investigating the Activity of Antioxidants Activities Content in Apiaceae and to Study Antimicrobial and Insecticidal Activity of Antioxidant by using SPME Fiber Assembly Carboxen/Polydimethylsiloxane (CAR/PDMS). Journal of Environmental Treatment Techniques. 2020;8(1):214-24.
26. Capella MAM, Capella LS. A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. Journal of biomedical science. 2003;10(4):361-6.
27. Konan YN, Gurny R, Allémann E. State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology. 2002;66(2):89-106.
28. Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. Journal of the American Academy of Dermatology. 2000;42(3):389-413.
29. Tedesco AC, Rotta J, Lunardi CN. Synthesis, photophysical and photochemical aspects of phthalocyanines for photodynamic therapy. Current Organic Chemistry. 2003;7(2):187-96.
30. Isaacs NS. Physical organic chemistry. Longman Scientific & Technical; 1995.
31. Kalyanasundaram K. Photochemistry of polypyridine and porphyrin complexes. vol BOOK. Academic Press; 1991.
32. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology B: Biology. 1997;39(1):1-18.
33. Mousavi SM, Hashemi SA, Zarei M, Gholami A, Lai CW, Chiang WH, et al. Recent Progress in Chemical Composition, Production, and Pharmaceutical Effects of Kombucha Beverage: A Complementary and Alternative Medicine. Evidence-Based Complementary and Alternative Medicine. 2020;2020.
34. Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A, Esmaeili H, et al. Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in brief. 2020;28:104929.
35. De Rosa FS, Bentley MVL. Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharmaceutical research. 2000;17(12):1447-55.
36. Goudarzian N, Samiei S, Safari F, Mousavi SM, Hashemi SA, Mazraedoost S. Enhancing the Physical, Mechanical, Oxygen Permeability and Photodegradation Properties of Styrene-acrylonitrile (SAN), Butadiene Rubber (BR) Composite by Silica Nanoparticles. Journal of Environmental Treatment Techniques. 2020;8(2):718-26.
37. Gannon MJ, Brown SB. Photodynamic therapy and its applications in gynaecology. BJOG: An International Journal of Obstetrics & Gynaecology. 1999;106(12):1246-54.
38. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5‐Aminolevulinic acid‐based photodynamic therapy: principles and experimental research. Photochemistry and photobiology. 1997;65(2):235-51.
39. Moan J, Streckyte G, Bagdonas S, Bech Ø, Berg K. Photobleaching of protoporphyrin IX in cells incubated with 5‐aminolevulinic acid. International journal of cancer. 1997;70(1):90-7.
40. Leznoff C, Lever A. Properties and Applications. VCH, New York; 1989.
41. Tokumaru K. Photochemical and photophysical behaviour of porphyrins and phthalocyanines irradiated with violet or ultraviolet light. Journal of Porphyrins and Phthalocyanines. 2001;5(1):77-86.
42. Abelson JN, Simon MI, Packer L, Sies H. Singlet Oxygen, UV-A and Ozone. Elsevier; 2000.
43. Rak J, Pouckova P, Benes J, Vetvicka D. Drug delivery systems for phthalocyanines for photodynamic therapy. Anticancer research. 2019;39(7):3323-39.
44. Epstein JH. Phototoxicity and photoallergy. Seminars in cutaneous medicine and surgery1999. p. 274-84.
45. Shah PM, Gerdes H. Endoscopic options for early stage esophageal cancer. Journal of gastrointestinal oncology. 2015;6(1):20.
46. Nanashima A, Nagayasu T. Current status of photodynamic therapy in digestive tract carcinoma in Japan. International journal of molecular sciences. 2015;16(2):3434-40.
47. Yano T, Muto M, Yoshimura K, Niimi M, Ezoe Y, Yoda Y, et al. Phase I study of photodynamic therapy using talaporfin sodium and diode laser for local failure after chemoradiotherapy for esophageal cancer. Radiation oncology. 2012;7(1):1-7.
48. Yano T, Muto M, Minashi K, Iwasaki J, Kojima T, Fuse N, et al. Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma: a phase II study. International journal of cancer. 2012;131(5):1228-34.
49. Green B, Cobb AR, Hopper C. Photodynamic therapy in the management of lesions of the head and neck. British Journal of Oral and Maxillofacial Surgery. 2013;51(4):283-7.
50. Simone II CB, Cengel KA. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Seminars in oncology: Elsevier; 2014. p. 820-30.
51. Allison RR, Moghissi K. Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagnosis and photodynamic therapy. 2013;10(4):331-41.
52. Behbudi G. Mini review of Graphene Oxide for medical detection and applications. Advances in Applied NanoBio-Technologies. 2020;1(3):63-6.
53. Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clinical endoscopy. 2013;46(1):7.
54. Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, Brindell M, Stochel G. Bioinorganic photochemistry: frontiers and mechanisms. Chemical reviews. 2005;105(6):2647-94.
55. Baran TM, Foster TH. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy. Medical physics. 2014;41(2):022701.
56. Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Current medicinal chemistry. 2011;18(16):2486-515.
57. Zuluaga M-F, Lange N. Combination of photodynamic therapy with anti-cancer agents. Current medicinal chemistry. 2008;15(17):1655-73.
58. Ge R, Ahn J-C, Shin J-I, Bahk CW, He P, Chung P-S. An in vitro and in vivo study of combination therapy with Photogem®-mediated photodynamic therapy and cisplatin on mouse cancer cells (CT-26). Photomedicine and laser surgery. 2011;29(3):155-60.
59. Kawazoe K, Isomoto H, Yamaguchi N, Inoue N, Uehara R, Matsushima K, et al. Effects of photodynamic therapy for superficial esophageal squamous cell carcinoma in vivo and in vitro. Oncology letters. 2010;1(5):877-82.
60. O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochemistry and photobiology. 2009;85(5):1053-74.
61. Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. The lancet oncology. 2004;5(8):497-508.
62. Dai T, Huang Y-Y, Hamblin MR. Photodynamic therapy for localized infections—state of the art. Photodiagnosis and photodynamic therapy. 2009;6(3-4):170-88.
63. Dykman L, Khlebtsov N. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae (англоязычная версия). 2011;3(2 (9)).
64. Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. Journal of Photochemistry and Photobiology B: Biology. 2009;96(1):1-8.
65. Dabrzalska M, Zablocka M, Mignani S, Majoral JP, Klajnert-Maculewicz B. Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: Cationic phosphorus dendrimer with rose bengal and anionic phosphorus dendrimer with methylene blue. International journal of pharmaceutics. 2015;492(1-2):266-74.
66. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers in medical science. 2009;24(2):259-68.
67. Kakde D, Jain D, Shrivastava V, Kakde R, Patil A. Cancer therapeutics-opportunities, challenges and advances in drug delivery. Journal of Applied Pharmaceutical Science. 2011;1(9):1-10.
68. Sztandera K, Gorzkiewicz M, Klajnert‐Maculewicz B. Nanocarriers in photodynamic therapy—in vitro and in vivo studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2020;12(3):e1509.
69. Dougherty T. Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy J Natl Cancer Inst. 1998;90:889-905.
70. Mousavi SM, Low FW, Hashemi SA, Samsudin NA, Shakeri M, Yusoff Y, et al. Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy. RSC Advances. 2020;10(22):12851-63.
71. Kessel D, Erickson C. Porphyrin photosensitization of multi‐drug resistant cell types. Photochemistry and photobiology. 1992;55(3):397-9.
72. Ğb JG, Nowis D, Skrzycki M, Czeczot H, Barańczyk-Kuźma A, Wilczyński GM, et al. Antitumor effects of photodynamic therapy are potentiated by 2-methoxyestradiol: A superoxide dismutase inhibitor. Journal of Biological Chemistry. 2003;278(1):407-14.
73. Szokalska A, Makowski M, Nowis D, Wilczyński GM, Kujawa M, Wójcik C, et al. Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer research. 2009;69(10):4235-43.
74. Nahabedian MY, Cohen RA, Contino MF, Terem TM, Wright WH, Berns MW, et al. Combination cytotoxic chemotherapy with cisplatin or doxorubicin and photodynamic therapy in murine tumors1. JNCI: Journal of the National Cancer Institute. 1988;80(10):739-43.
75. Sinha A, Anand S, Ortel B, Chang Y, Mai Z, Hasan T, et al. Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells. British journal of cancer. 2006;95(4):485-95.
76. Ma L, Berg K, Danielsen H, Kaalhus O, Iani V, Moan J. Enhanced antitumour effect of photodynamic therapy by microtubule inhibitors. Cancer letters. 1996;109(1-2):129-39.
77. Mroz P, Hamblin MR. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model. Photodynamic Therapy: Back to the Future: International Society for Optics and Photonics; 2009. p. 73800H.
78. Pogue BW, O’hara JA, Demidenko E, Wilmot CM, Goodwin IA, Chen B, et al. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer research. 2003;63(5):1025-33.
79. Luksiene Z, Kalvelyte A, Supino R. On the combination of photodynamic therapy with ionizing radiation. Journal of Photochemistry and Photobiology B: Biology. 1999;52(1-3):35-42.
80. Weinberg BD, Allison RR, Sibata C, Parent T, Downie G. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non-small cell lung cancer (NSCLC). Photodiagnosis and photodynamic therapy. 2010;7(1):50-8.
81. Ferrario A, Von Tiehl K, Wong S, Luna M, Gomer CJ. Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response. Cancer research. 2002;62(14):3956-61.
82. Makowski M, Grzela T, Niderla J, Łazarczyk M, Mróz P, Kopeé M, et al. Inhibition of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice. Clinical Cancer Research. 2003;9(14):5417-22.
83. Ferrario A, Fisher AM, Rucker N, Gomer CJ. Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors. Cancer research. 2005;65(20):9473-8.
84. Kleban J, Mikeš J, Horváth V, Sačková V, Hofmanová J, Kozubík A, et al. Mechanisms involved in the cell cycle and apoptosis of HT-29 cells pre-treated with MK-886 prior to photodynamic therapy with hypericin. Journal of Photochemistry and Photobiology B: Biology. 2008;93(2):108-18.
85. Sato N, Moore BW, Keevey S, Drazba JA, Hasan T, Maytin EV. Vitamin D enhances ALA-induced protoporphyrin IX production and photodynamic cell death in 3-D organotypic cultures of keratinocytes. Journal of investigative dermatology. 2007;127(4):925-34.
86. Liu W, Baer MR, Bowman MJ, Pera P, Zheng X, Morgan J, et al. The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2. Clinical cancer research. 2007;13(8):2463-70.
87. Biade S, Maziere J, Mora L, Santus R, Maziere C, Auclair M, et al. Lovastatin potentiates the photocytotoxic effect of photofrin II delivered to HT29 human colonic adenocarcinoma cells by low density lipoprotein. Photochemistry and photobiology. 1993;57(2):371-5.
88. Traul DL, Anderson GS, Bilitz JM, Krieg M, Sieber F. Potentiation of merocyanine 540‐mediated photodynamic therapy by salicylate and related drugs. Photochemistry and photobiology. 1995;62(4):790-9.
89. Gołab J, Olszewska D, Mróz P, Kozar K, Kamiński R, Jalili A, et al. Erythropoietin restores the antitumor effectiveness of photodynamic therapy in mice with chemotherapy-induced anemia. Clinical cancer research. 2002;8(5):1265-70.
90. Solar P, Koval J, Mikeš J, Kleban J, Solárová Z, Lazúr J, et al. Erythropoietin inhibits apoptosis induced by photodynamic therapy in ovarian cancer cells. Molecular cancer therapeutics. 2008;7(8):2263-71.
91. Huang Z, Chen Q, Shakil A, Chen H, Beckers J, Shapiro H, et al. Hyperoxygenation Enhances the Tumor Cell Killing of Photofrin‐mediated Photodynamic Therapy¶. Photochemistry and photobiology. 2003;78(5):496-502.
92. Verma S, Watt GM, Mai Z, Hasan T. Strategies for enhanced photodynamic therapy effects. Photochemistry and Photobiology. 2007;83(5):996-1005.
93. Orenstein A, Kostenich G, Kopolovic Y, Babushkina T, Malik Z. Enhancement of ALA‐PDT Damage by IR‐lnduced Hyperthermia on a Colon Carcinoma Model. Photochemistry and photobiology. 1999;69(6):703-7.
94. Moore JV, West CM, Haylett AK. Vascular function and tissue injury in murine skin following hyperthermia and photodynamic therapy, alone and in combination. British journal of cancer. 1992;66(6):1037-43.
95. van Geel IP, Oppelaar H, Oussoren YG, Van Valk MAD, Stewart FA. Photosensitizing efficacy of MTHPC‐PDT compared to Photofrin‐PDT in the RIF1 mouse tumour and normal skin. International journal of cancer. 1995;60(3):388-94.
96. Cincotta L, Szeto D, Lampros E, Hasan T, Cincotta AH. Benzophenothiazine and benzoporphyrin derivative combination phototherapy effectively eradicates large murine sarcomas. Photochemistry and photobiology. 1996;63(2):229-37.
97. Peng Q, Warloe T, Moan J, Godal A, Apricena F, Giercksky K-E, et al. Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts. Cancer research. 2001;61(15):5824-32.
98. Weyergang A, Berg K, Kaalhus O, Peng Q, Selbo PK. Photodynamic therapy targets the mTOR signaling network in vitro and in vivo. Molecular pharmaceutics. 2009;6(1):255-64.
99. Separovic D, Bielawski J, Pierce J, Merchant S, Tarca A, Ogretmen B, et al. Increased tumour dihydroceramide production after Photofrin-PDT alone and improved tumour response after the combination with the ceramide analogue LCL29. Evidence from mouse squamous cell carcinomas. British journal of cancer. 2009;100(4):626-32.
100. Kessel D, Caruso JA, Reiners JJ. Potentiation of photodynamic therapy by ursodeoxycholic acid. Cancer research. 2000;60(24):6985-8.
101. Kessel D. Promotion of PDT efficacy by a Bcl‐2 antagonist. Photochemistry and photobiology. 2008;84(3):809-14.
102. Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski G, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene. 2006;25(24):3365-74.
103. Miyake M, Ishii M, Kawashima K, Kodama T, Sugano K, Fujimoto K, et al. siRNA‐mediated knockdown of the heme synthesis and degradation pathways: modulation of treatment effect of 5‐aminolevulinic acid‐based photodynamic therapy in urothelial cancer cell lines. Photochemistry and photobiology. 2009;85(4):1020-7.
104. Jiang F, Robin A, Katakowski M, Tong L, Espiritu M, Singh G, et al. Photodynamic therapy with photofrin in combination with Buthionine Sulfoximine (BSO) of human glioma in the nude rat. Lasers in medical science. 2003;18(3):128-33.
105. Melnikova VO, Bezdetnaya LN, Brault D, Potapenko AY, Guillemin F. Enhancement of meta‐tetrahydroxyphenylchlorin‐sensitized photodynamic treatment on human tumor xenografts using a water‐soluble vitamin E analogue, Trolox. International journal of cancer. 2000;88(5):798-803.
106. Gomer CJ, Ferrario A, Luna M, Rucker N, Wong S. Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 2006;38(5):516-21.
107. Jiang F, Zhang X, Kalkanis SN, Zhang Z, Yang H, Katakowski M, et al. Combination therapy with antiangiogenic treatment and photodynamic therapy for the nude mouse bearing U87 glioblastoma. Photochemistry and photobiology. 2008;84(1):128-37.
108. Ferrario A, Chantrain CF, von Tiehl K, Buckley S, Rucker N, Shalinsky DR, et al. The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model. Cancer research. 2004;64(7):2328-32.
109. Kosharskyy B, Solban N, Chang SK, Rizvi I, Chang Y, Hasan T. A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer. Cancer research. 2006;66(22):10953-8.
110. Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer research. 2000;60(15):4066-9.
111. Zhou Q, Olivo M, Lye KYK, Moore S, Sharma A, Chowbay B. Enhancing the therapeutic responsiveness of photodynamic therapy with the antiangiogenic agents SU5416 and SU6668 in murine nasopharyngeal carcinoma models. Cancer chemotherapy and pharmacology. 2005;56(6):569-77.
112. Ferrario A, Rucker N, Wong S, Luna M, Gomer CJ. Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer research. 2007;67(10):4989-95.
113. Sibani SA, McCarron PA, Woolfson AD, Donnelly RF. Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms. Expert opinion on drug delivery. 2008;5(11):1241-54.
114. Hoseinzadeh A, Sadeghipour Y, Behbudi G. Investigation Preliminary antimicrobial and anticancer properties: on Topic Rubia tinctorum plant by using Polydimethylsiloxane (CAR/PDMS). Advances in Applied NanoBio-Technologies. 2020;1(1):10-9.
115. Berg K, Anholt H, Bech Ø, Moan J. The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells. British journal of cancer. 1996;74(5):688-97.
116. Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis. 2009;14(8):996-1007.
117. Mousavi SM, Hashemi SA, Salahi S, Hosseini M, Amani AM, Babapoor A. Development of clay nanoparticles toward bio and medical applications. Current Topics in the Utilization of Clay in Industrial and Medical Applications. 2018;9:167.
118. Ahmadi S. Phenol Novalac Epoxy-modified unsaturated polyester hybrid networks by Silica Nanoparticles/and Cross linking with Silane Compounds. Advances in Applied NanoBio-Technologies. 2020;1(2):28-32.
119. Aghili A. Preparation of PMMA/nano-SiO2 nanocomposite and its application in formation of microcellular foams using supercritical CO2. Advances in Applied NanoBio-Technologies. 2020;1(4):105-14.
120. Hoseini FS, Taherian R, Atashi A. Manufacturing and Properties of Poly Vinyl Alcohol/Fibrin Nanocomposite Used for Wound Dressing. Advances in Applied NanoBio-Technologies. 2020:6-12.
121. Niknam Z, Goudarzian N, Yousefi K. Reducing Amination of Aldehydes and Ketons with Highly Branch Polyethylenemine Supported Zirconia Borohydride and Nano Tetrachlorosilane as a New and Mild Reducing Agent. Advances in Applied NanoBio-Technologies. 2021;2(1):17-22.
122. Yousefi K, Khalife A. Influence of phosphor precursors on the morphology and purity of sol–gel-derived hydroxyapatite nanoparticles. Advances in Applied NanoBio-Technologies. 2021:49-52.
123. Moshfeghian M, Azimi H, Mahkam M, Kalaee M, Mazinani S, Mosafer H. Effect of Solution Properties on Electrospinning of Polymer Nanofibers: A Study on Fabrication of PVDF Nanofibers by Electrospinning in DMAC and (DMAC/Acetone) Solvents. Advances in Applied NanoBio-Technologies. 2021:53-8.
124. Bernegossi J, Calixto GMF, Sanches PRdS, Fontana CR, Cilli EM, Garrido SS, et al. Peptide KSL-W-loaded mucoadhesive liquid crystalline vehicle as an alternative treatment for multispecies oral biofilm. Molecules. 2016;21(1):37.
125. Hashemi SA, Behbahan NGG, Bahrani S, Mousavi SM, Gholami A, Ramakrishna S, et al. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosensors and Bioelectronics. 2020;171:112731.
126. Mousavi SM, Hashemi SA, Ramakrishna S, Esmaeili H, Bahrani S, Koosha M, et al. Green synthesis of supermagnetic Fe3O4–MgO nanoparticles via Nutmeg essential oil toward superior anti-bacterial and anti-fungal performance. Journal of Drug Delivery Science and Technology. 2019;54:101352.
127. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S. Polythiophene silver bromide nanostructure as ultra-sensitive non-enzymatic electrochemical glucose biosensor. European Polymer Journal. 2020;138:109959. doi: https://doi.org/10.1016/j.eurpolymj.2020.109959.
128. Yousefi M, Modghan N, Ebrahimzadeh MH. Surface Modification of Nano-Hydroxyapatite by Coating Stearic Acid. Advances in Applied NanoBio-Technologies. 2020;1(1):1-4.
129. Ahmadi S. The importance of silver nanoparticles in human life. Advances in Applied NanoBio-Technologies. 2020;1(1):5-9.
130. Sadeghipour Y, Mojoudi F, Behbudi G. Modification and Improvement of Fe3O4-Embedded Poly (thiophene) Core/Shell Nanoparticles for Cadmium Removal by Cloud Point Extraction. Advances in Applied NanoBio-Technologies. 2020;1(1):20-7.
131. Raeisi F, Raeisi E. Mini review of polysaccharide nanoparticles and drug delivery process. Advances in Applied NanoBio-Technologies. 2020;1(2):33-44.
132. Abootalebi SN, Shorafa E. The Recent advances in gene delivery using nanostructures and future prospects. Advances in Applied NanoBio-Technologies. 2020;1(2):45-52.
133. Banaei N, Ahmadi S. High-density polyethylene surface modification for the attachment of Eggshell and Oak Bark Nanoparticles. Advances in Applied NanoBio-Technologies. 2020;1(3):67-71.
134. Behbudi G. Effect of silver nanoparticles disinfectant on covid-19. Advances in Applied NanoBio-Technologies. 2021;2(2):63-7.
135. Manmode AS, Sakarkar DM, Mahajan NM. Nanoparticles-tremendous therapeutic potential: a review. International Journal of PharmTech Research. 2009;1(4):1020-7.
136. Ohulchanskyy TY, Roy I, Goswami LN, Chen Y, Bergey EJ, Pandey RK, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano letters. 2007;7(9):2835-42.
137. Ahmadi S, Fazilati M, Mousavi SM, Nazem H. Anti-bacterial/fungal and anti-cancer performance of green synthesized Ag nanoparticles using summer savory extract. Journal of Experimental Nanoscience. 2020;15(1):363-80.
138. Ashoori Y, Mohkam M, Heidari R, Abootalebi SN, Mousavi SM, Hashemi SA, et al. Development and In Vivo Characterization of Probiotic Lysate-Treated Chitosan Nanogel as a Novel Biocompatible Formulation for Wound Healing. BioMed Research International. 2020;2020.
139. Ahmadi S, Fazilati M, Nazem H, Mousavi SM. Green Synthesis of Magnetic Nanoparticles Using Satureja hortensis Essential Oil toward Superior Antibacterial/Fungal and Anticancer Performance. BioMed Research International. 2021;2021:8822645. doi: 10.1155/2021/8822645.
140. Yousefi K, Manesh HD. Production of calcium silicate Nano-biocomposite and modeling of its flexural and compressive strength with statistics method. Advances in Applied NanoBio-Technologies. 2020;1(3):72-6.
141. Khdair A, Gerard B, Handa H, Mao G, Shekhar MP, Panyam J. Surfactant− polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Molecular pharmaceutics. 2008;5(5):795-807.
142. Yu Z, Li H, Zhang L-M, Zhu Z, Yang L. Enhancement of phototoxicity against human pancreatic cancer cells with photosensitizer-encapsulated amphiphilic sodium alginate derivative nanoparticles. International journal of pharmaceutics. 2014;473(1-2):501-9.
143. Yuan Y, Liu B. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy. ACS applied materials & interfaces. 2014;6(17):14903-10.
144. Henderson BW, Sitnik‐Buscr TM, Vaughan LA. Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase
Published
2021-09-20
Section
Articles