Application of nano-antibiotics in the diagnosis and treatment of infectious diseases

  • Masoomeh Yari Kalashgarani university of mohaghegh ardabili
  • Aziz Babapoor
Keywords: Infectious diseases; Antimicrobial; Nanoparticles; Nano-carriers; Antibiotic


Infectious diseases are the leading cause of death worldwide. Thus, nanotechnology provides an excellent opportunity to treat drug-resistant microbial infections. Numerous antibiotics have been used to inhibit the growth and kill of microbes, but the development of resistance and the emergence of side effects have severely limited the use of these agents. Due to the development of the nanotechnology, nanoparticles are widely used as antimicrobials. Silver and chitosan nanoparticles have antifungal, antiviral and antibacterial properties, and many studies confirm the antifungal properties of silver nanoparticles. Nowadays, the use of nanoparticles in the diagnosis and treatment of infectious diseases has developed due to less side effects and also the help of these particles in effective drug delivery to the target tissue. Liposomes are also used as carriers of drug delivery, genes, and modeling of cell membranes in both animals and humans. The ability of these liposomes to encapsulate large amounts of drugs, minimize unwanted side effects, high effectiveness and low toxicity has attracted the interest of researchers. This review article examines recent efforts by researchers to identify and treat infectious diseases using antimicrobial nanoparticles and drug nano-carriers.


Download data is not yet available.


1. Abdussalam-Mohammed, W., Review of Therapeutic Applications of Nanotechnology in Medicine Field and its Side Effects. Journal of Chemical Reviews, 2019. 1(3): p. 243-251.
2. Si, D.-Y., Y. Sun, T. Cheng, and C. Liu, Biomedical evaluation of nanomedicines. Asian Journal of Pharmacodynamics and Pharmacokinetics, 2007. 7(2): p. 83-97.
3. Mousavi, S.M., S.A. Hashemi, S. Bahrani, K. Yousefi, G. Behbudi, A. Babapoor, N. Omidifar, C.W. Lai, A. Gholami, and W.-H. Chiang, Recent advancements in polythiophene-based materials and their biomedical, geno sensor and DNA detection. International Journal of Molecular Sciences, 2021. 22(13): p. 6850.
5. Mousavi, S.M., S.A. Hashemi, S. Ramakrishna, H. Esmaeili, S. Bahrani, M. Koosha, and A. Babapoor, Green synthesis of supermagnetic Fe3O4–MgO nanoparticles via Nutmeg essential oil toward superior anti-bacterial and anti-fungal performance. Journal of Drug Delivery Science and Technology, 2019. 54: p. 101352.
6. Papazoglou, E.S. and A. Parthasarathy, Bionanotechnology. Synthesis lectures on biomedical engineering, 2007. 2(1): p. 1-139.
7. Fakruddin, M., Z. Hossain, and H. Afroz, Prospects and applications of nanobiotechnology: a medical perspective. Journal of nanobiotechnology, 2012. 10(1): p. 1-8.
8. Mousavi, S.M., F.W. Low, S.A. Hashemi, N.A. Samsudin, M. Shakeri, Y. Yusoff, M. Rahsepar, C.W. Lai, A. Babapoor, and S. Soroshnia, Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy. RSC Advances, 2020. 10(22): p. 12851-12863.
9. Hoseinzadeh, E., P. Makhdoumi, P. Taha, H. Hossini, J. Stelling, and M. Amjad Kamal, A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Current drug metabolism, 2017. 18(2): p. 120-128.
10. Xiong, M.-H., Y. Bao, X.-Z. Yang, Y.-H. Zhu, and J. Wang, Delivery of antibiotics with polymeric particles. Advanced drug delivery reviews, 2014. 78: p. 63-76.
11. Lecaroz, C., C. Gamazo, and M. Blanco-Prieto, Nanocarriers with gentamicin to treat intracellular pathogens. Journal of nanoscience and nanotechnology, 2006. 6(9-10): p. 3296-3302.
12. Toti, U.S., B.R. Guru, M. Hali, C.M. McPharlin, S.M. Wykes, J. Panyam, and J.A. Whittum-Hudson, Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials, 2011. 32(27): p. 6606-6613.
13. Zorrilla-Vaca, A. and K. Escandón-Vargas, The importance of infection control and prevention in anesthesiology. Colombian Journal of Anesthesiology, 2017. 45: p. 69-77.
14. Ellwanger, J.H., V. de Lima Kaminski, and J.A. Chies, Emerging infectious disease prevention: Where should we invest our resources and efforts? Journal of infection and public health, 2019. 12(3): p. 313-316.
15. Kirtane, A.R., M. Verma, P. Karandikar, J. Furin, R. Langer, and G. Traverso, Nanotechnology approaches for global infectious diseases. Nature Nanotechnology, 2021. 16(4): p. 369-384.
16. Bakker-Woudenberg, I.A., Delivery of antimicrobials to infected tissue macrophages. Advanced drug delivery reviews, 1995. 17(1): p. 5-20.
17. Zhang, L., D. Pornpattananangkul, C.-M. Hu, and C.-M. Huang, Development of nanoparticles for antimicrobial drug delivery. Current medicinal chemistry, 2010. 17(6): p. 585-594.
18. Huh, A.J. and Y.J. Kwon, “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release, 2011. 156(2): p. 128-145.
19. Ahmadi, S., M. Fazilati, S.M. Mousavi, and H. Nazem, Anti-bacterial/fungal and anti-cancer performance of green synthesized Ag nanoparticles using summer savory extract. Journal of Experimental Nanoscience, 2020. 15(1): p. 363-380.
20. Taubes, G., The bacteria fight back. 2008, American Association for the Advancement of Science.
21. Boucher, H.W., G.H. Talbot, J.S. Bradley, J.E. Edwards, D. Gilbert, L.B. Rice, M. Scheld, B. Spellberg, and J. Bartlett, Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases, 2009. 48(1): p. 1-12.
22. Rice, L.B., The clinical consequences of antimicrobial resistance. Current opinion in microbiology, 2009. 12(5): p. 476-481.
23. Zhang, L., F. Gu, J. Chan, A. Wang, R. Langer, and O. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics, 2008. 83(5): p. 761-769.
24. Gholami, A., S.A. Hashemi, K. Yousefi, S.M. Mousavi, W.-H. Chiang, S. Ramakrishna, S. Mazraedoost, A. Alizadeh, N. Omidifar, and G. Behbudi, 3D nanostructures for tissue engineering, cancer therapy, and gene delivery. Journal of Nanomaterials, 2020. 2020.
25. Rai, M., A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 2009. 27(1): p. 76-83.
26. Schaller, M., J. Laude, H. Bodewaldt, G. Hamm, and H. Korting, Toxicity and antimicrobial activity of a hydrocolloid dressing containing silver particles in an ex vivo model of cutaneous infection. Skin pharmacology and physiology, 2004. 17(1): p. 31-36.
27. Goodman, C.M., C.D. McCusker, T. Yilmaz, and V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate chemistry, 2004. 15(4): p. 897-900.
28. Pal, S., Y.K. Tak, and J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and environmental microbiology, 2007. 73(6): p. 1712-1720.
29. Weir, E., A. Lawlor, A. Whelan, and F. Regan, The use of nanoparticles in anti-microbial materials and their characterization. Analyst, 2008. 133(7): p. 835-845.
30. Hashemi, S.A., S.M. Mousavi, S. Bahrani, S. Ramakrishna, A. Babapoor, and W.-H. Chiang, Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Analytica chimica acta, 2020. 1107: p. 183-192.
31. Allaker, R.P. and G. Ren, Potential impact of nanotechnology on the control of infectious diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008. 102(1): p. 1-2.
32. Brooks, B.D. and A.E. Brooks, Therapeutic strategies to combat antibiotic resistance. Advanced drug delivery reviews, 2014. 78: p. 14-27.
33. Klostranec, J.M. and W.C. Chan, Quantum dots in biological and biomedical research: recent progress and present challenges. Advanced Materials, 2006. 18(15): p. 1953-1964.
34. Bahrani, S., S.A. Hashemi, S.M. Mousavi, and R. Azhdari, Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug metabolism reviews, 2019. 51(3): p. 356-377.
35. Lee, D.-E., H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, and I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society Reviews, 2012. 41(7): p. 2656-2672.
36. Mousavi, S.M., M. Zarei, S.A. Hashemi, A. Babapoor, and A.M. Amani, A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. Artificial cells, nanomedicine, and biotechnology, 2019. 47(1): p. 1132-1148.
37. Fang, R.H. and L. Zhang, Combatting infections with nanomedicine. 2018, Wiley Online Library.
38. Zhu, X., A.F. Radovic-Moreno, J. Wu, R. Langer, and J. Shi, Nanomedicine in the management of microbial infection–overview and perspectives. Nano today, 2014. 9(4): p. 478-498.
39. Mousavi, S.M., S. Soroshnia, S.A. Hashemi, A. Babapoor, Y. Ghasemi, A. Savardashtaki, and A.M. Amani, Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug metabolism reviews, 2019. 51(1): p. 91-104.
40. Kim, J.S., E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, and C.-Y. Hwang, Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(1): p. 95-101.
41. Dallas, P., V.K. Sharma, and R. Zboril, Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Advances in colloid and interface science, 2011. 166(1-2): p. 119-135.
42. Khameneh, B., M. Iranshahy, M. Ghandadi, D. Ghoochi Atashbeyk, B.S. Fazly Bazzaz, and M. Iranshahi, Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug development and industrial pharmacy, 2015. 41(6): p. 989-994.
43. Ruparelia, J.P., A.K. Chatterjee, S.P. Duttagupta, and S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia, 2008. 4(3): p. 707-716.
44. Kim, K.-J., W.S. Sung, B.K. Suh, S.-K. Moon, J.-S. Choi, J.G. Kim, and D.G. Lee, Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals, 2009. 22(2): p. 235-242.
45. Nasrollahi, A., K. Pourshamsian, and P. Mansourkiaee, Antifungal activity of silver nanoparticles on some of fungi. 2011.
46. Caner, H., E. Yilmaz, and O. Yilmaz, Synthesis, characterization and antibacterial activity of poly (N-vinylimidazole) grafted chitosan. Carbohydrate Polymers, 2007. 69(2): p. 318-325.
47. Shrivastava, S., T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007. 18(22): p. 225103.
48. Mackay, I.M., Real-time PCR in the microbiology laboratory. Clinical microbiology and infection, 2004. 10(3): p. 190-212.
49. Bell, D., C. Wongsrichanalai, and J.W. Barnwell, Ensuring quality and access for malaria diagnosis: how can it be achieved? Nature Reviews Microbiology, 2006. 4(9): p. 682-695.
50. Murray, C.K., R.A. Gasser Jr, A.J. Magill, and R.S. Miller, Update on rapid diagnostic testing for malaria. Clinical microbiology reviews, 2008. 21(1): p. 97-110.
51. Jiang, X. and P.B. Lillehoj, Lateral flow immunochromatographic assay on a single piece of paper. Analyst, 2021. 146(3): p. 1084-1090.
52. Mousavi, S.M., S.A. Hashemi, S. Salahi, M. Hosseini, A.M. Amani, and A. Babapoor, Development of clay nanoparticles toward bio and medical applications. 2018: IntechOpen.
53. Jain, K.K., Nanotechnology in clinical laboratory diagnostics. Clinica chimica acta, 2005. 358(1-2): p. 37-54.
54. Tansil, N.C. and Z. Gao, Nanoparticles in biomolecular detection. Nano Today, 2006. 1(1): p. 28-37.
55. Fortina, P., L.J. Kricka, S. Surrey, and P. Grodzinski, Nanobiotechnology: the promise and reality of new approaches to molecular recognition. TRENDS in Biotechnology, 2005. 23(4): p. 168-173.
56. Salata, O.V., Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology, 2004. 2(1): p. 1-6.
57. Mousavi, S.M., S.A. Hashemi, M. Zarei, S. Bahrani, A. Savardashtaki, H. Esmaeili, C.W. Lai, S. Mazraedoost, M. Abassi, and B. Ramavandi, Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris. Data in brief, 2020. 28: p. 104929.
58. Sosnik, A., Á.M. Carcaboso, R.J. Glisoni, M.A. Moretton, and D.A. Chiappetta, New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Advanced drug delivery reviews, 2010. 62(4-5): p. 547-559.
59. Mansour, H.M., Y.-S. Rhee, and X. Wu, Nanomedicine in pulmonary delivery. International journal of nanomedicine, 2009. 4: p. 299.
60. Mirkin, C.A., R.L. Letsinger, R.C. Mucic, and J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996. 382(6592): p. 607-609.
61. Kai, E., S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, Detection of PCR products in solution using surface plasmon resonance. Analytical chemistry, 1999. 71(4): p. 796-800.
62. Reichert, A., J.O. Nagy, W. Spevak, and D. Charych, Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. Journal of the American Chemical Society, 1995. 117(2): p. 829-830.
63. Patolsky, F., G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C.M. Lieber, Electrical detection of single viruses. Proceedings of the National Academy of Sciences, 2004. 101(39): p. 14017-14022.
64. Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. science, 1998. 281(5385): p. 2013-2016.
65. Ness, J.M., R.S. Akhtar, C.B. Latham, and K.A. Roth, Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. Journal of Histochemistry & Cytochemistry, 2003. 51(8): p. 981-987.
66. Tully, E., S. Hearty, P. Leonard, and R. O’Kennedy, The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. International journal of biological macromolecules, 2006. 39(1-3): p. 127-134.
67. Gao, X. and S. Nie, Luminescent quantum dots for biological labeling. 2004: Wiley-VCH Verlag Gmbh & Co. KGaA: Weinheim.
68. Li, Q., S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, and P.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 2008. 42(18): p. 4591-4602.
69. Abeylath, S.C. and E. Turos, Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics. Expert opinion on drug delivery, 2008. 5(9): p. 931-949.
70. Cavalieri, F., M. Tortora, A. Stringaro, M. Colone, and L. Baldassarri, Nanomedicines for antimicrobial interventions. Journal of Hospital Infection, 2014. 88(4): p. 183-190.
71. El-Ansary, A. and S. Al-Daihan, On the toxicity of therapeutically used nanoparticles: an overview. Journal of Toxicology, 2009. 2009.
72. Mamun, M.M., A.J. Sorinolu, M. Munir, and E.P. Vejerano, Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Frontiers in chemistry, 2021. 9: p. 348.
73. Hashemi, S.A., S.M. Mousavi, S. Bahrani, and S. Ramakrishna, Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes as ultrasensitive electrochemical sensor for precise detection of 4-nitrophenol within aquatic media. Journal of Electroanalytical Chemistry, 2020. 873: p. 114406.
74. Liu, L., R. Cai, Y. Wang, G. Tao, L. Ai, P. Wang, M. Yang, H. Zuo, P. Zhao, and H. He, Polydopamine-assisted silver nanoparticle self-assembly on sericin/agar film for potential wound dressing application. International journal of molecular sciences, 2018. 19(10): p. 2875.
75. Abootalebi, S.N., S.M. Mousavi, S.A. Hashemi, E. Shorafa, N. Omidifar, and A. Gholami, Antibacterial Effects of Green-Synthesized Silver Nanoparticles Using Ferula asafoetida against Acinetobacter baumannii Isolated from the Hospital Environment and Assessment of Their Cytotoxicity on the Human Cell Lines. Journal of Nanomaterials, 2021. 2021.
76. Rzayev, Z.M., U. Bunyatova, J.F. Lovell, W. Shen, T. Thomay, and A. Cartwright, Ag-carried CMC/functional copolymer/ODA-Mt wLED-treated NC and their responses to brain cancer cells. Materials Science and Engineering: C, 2018. 92: p. 463-476.
77. Liu, Y.-j., L.-l. He, A. Mustapha, H. Li, Z. Hu, and M.-s. Lin, Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of applied microbiology, 2009. 107(4): p. 1193-1201.
78. Chamundeeswari, M., S.L. Sobhana, J.P. Jacob, M.G. Kumar, M.P. Devi, T.P. Sastry, and A.B. Mandal, Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnology and applied biochemistry, 2010. 55(1): p. 29-35.
79. Huang, W.C., P.J. Tsai, and Y.C. Chen, Multifunctional Fe3O4@ Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic‐resistant bacteria. Small, 2009. 5(1): p. 51-56.
80. Sharma, V.K., R.A. Yngard, and Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in colloid and interface science, 2009. 145(1-2): p. 83-96.
81. Galdiero, S., A. Falanga, M. Vitiello, M. Cantisani, V. Marra, and M. Galdiero, Silver nanoparticles as potential antiviral agents. Molecules, 2011. 16(10): p. 8894-8918.
82. Ramesh, N., M. Prasanth, G. KM, and B. Bozdogan, Nano-antibiotics: A Therapeutic Future. Nanoscience & Nanotechnology-Asia, 2017. 7(1): p. 3-25.
83. Klasen, H., Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 2000. 26(2): p. 117-130.
84. Shahverdi, A.R., A. Fakhimi, H.R. Shahverdi, and S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(2): p. 168-171.
85. Fayaz, A.M., K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, and R. Venketesan, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(1): p. 103-109.
86. Furno, F., K.S. Morley, B. Wong, B.L. Sharp, P.L. Arnold, S.M. Howdle, R. Bayston, P.D. Brown, P.D. Winship, and H.J. Reid, Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 2004. 54(6): p. 1019-1024.
87. Ip, M., S.L. Lui, V.K. Poon, I. Lung, and A. Burd, Antimicrobial activities of silver dressings: an in vitro comparison. Journal of medical microbiology, 2006. 55(1): p. 59-63.
88. Li, Y., P. Leung, L. Yao, Q. Song, and E. Newton, Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, 2006. 62(1): p. 58-63.
89. Birla, S., V. Tiwari, A. Gade, A. Ingle, A. Yadav, and M. Rai, Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Letters in Applied Microbiology, 2009. 48(2): p. 173-179.
90. Ruden, S., K. Hilpert, M. Berditsch, P. Wadhwani, and A.S. Ulrich, Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrobial agents and chemotherapy, 2009. 53(8): p. 3538-3540.
91. Li, P., J. Li, C. Wu, Q. Wu, and J. Li, Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 2005. 16(9): p. 1912.
92. Gopinath, V. and P. Velusamy, Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013. 106: p. 170-174.
93. Hossain, A., X. Hong, E. Ibrahim, B. Li, G. Sun, Y. Meng, Y. Wang, and Q. An, Green synthesis of silver nanoparticles with culture supernatant of a bacterium Pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen Dickeya dadantii. Molecules, 2019. 24(12): p. 2303.
94. Mishra, S., B.R. Singh, A.H. Naqvi, and H. Singh, Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Scientific reports, 2017. 7(1): p. 1-15.
95. Al-Zubaidi, S., A. Al-Ayafi, and H. Abdelkader, Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolate. Journal of Nanotechnology Research, 2019. 1(1): p. 23-36.
96. Almaary, K.S., S.R. Sayed, O.H. Abd-Elkader, T.M. Dawoud, N.F. El Orabi, and A.M. Elgorban, Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi journal of biological sciences, 2020. 27(5): p. 1333-1339.
97. Balakumaran, M., R. Ramachandran, and P. Kalaichelvan, Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiological research, 2015. 178: p. 9-17.
98. Paulkumar, K., G. Gnanajobitha, M. Vanaja, S. Rajeshkumar, C. Malarkodi, K. Pandian, and G. Annadurai, Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. The Scientific World Journal, 2014. 2014.
99. Ali, K.A., R. Yao, W. Wu, M.M.I. Masum, J. Luo, Y. Wang, Y. Zhang, Q. An, G. Sun, and B. Li, Biosynthesis of silver nanoparticle from pomelo (Citrus Maxima) and their antibacterial activity against acidovorax oryzae RS-2. Materials Research Express, 2020. 7(1): p. 015097.
100. Ali, M., B. Kim, K.D. Belfield, D. Norman, M. Brennan, and G.S. Ali, Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 2015. 105(9): p. 1183-1190.
101. Chung, Y.-C., H.-L. Wang, Y.-M. Chen, and S.-L. Li, Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource technology, 2003. 88(3): p. 179-184.
102. Rabea, E.I., M.E.-T. Badawy, C.V. Stevens, G. Smagghe, and W. Steurbaut, Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003. 4(6): p. 1457-1465.
103. Ruman, U., S. Fakurazi, M.J. Masarudin, and M.Z. Hussein, Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. International journal of nanomedicine, 2020. 15: p. 1437.
104. Turaga, U., V. Singh, and S. Ramkumar, Biological and chemical protective finishes for textiles, in Functional finishes for textiles. 2015, Elsevier. p. 555-578.
105. Qi, L., Z. Xu, X. Jiang, C. Hu, and X. Zou, Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 2004. 339(16): p. 2693-2700.
106. Don, T.-M., C.-C. Chen, C.-K. Lee, W.-Y. Cheng, and L.-P. Cheng, Preparation and antibacterial test of chitosan/PAA/PEGDA bi-layer composite membranes. Journal of Biomaterials Science, Polymer Edition, 2005. 16(12): p. 1503-1519.
107. Fernandes, J.C., F.K. Tavaria, S.C. Fonseca, Ó.S. Ramos, M.E. Pintado, and F.X. Malcata, In vitro screening for antimicrobial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles. Journal of microbiology and biotechnology, 2010. 20(2): p. 311-318.
108. No, H.K., N.Y. Park, S.H. Lee, and S.P. Meyers, Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International journal of food microbiology, 2002. 74(1-2): p. 65-72.
109. Baxter, R.M., T. Dai, J. Kimball, E. Wang, M.R. Hamblin, W.P. Wiesmann, S.J. McCarthy, and S.M. Baker, Chitosan dressing promotes healing in third degree burns in mice: gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling. Journal of Biomedical Materials Research Part A, 2013. 101(2): p. 340-348.
110. Mousavi, S., M. Zarei, and S. Hashemi, Polydopamine for biomedical application and drug delivery system. Med Chem (Los Angeles), 2018. 8: p. 218-29.
111. Cuero, R., G. Osuji, and A. Washington, N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnology letters, 1991. 13(6): p. 441-444.
112. Je, J.-Y. and S.-K. Kim, Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. Journal of agricultural and food chemistry, 2006. 54(18): p. 6629-6633.
113. Mousavi, S.M., S.A. Hashemi, A.M. Amani, H. Saed, S. Jahandideh, and F. Mojoudi, Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties. Polymers from Renewable Resources, 2017. 8(4): p. 177-196.
114. Taheri, A., A. Seyfan, and S. Jalalinezhad, Antimicrobial and antifungal effects of acid and water-soluble chitosan extracted from Indian shrimp (Fenneropenaeus indicus) shell. Journal of Fasa University of Medical Sciences, 2013. 3(1): p. 49-55.
115. Aksungur, P., A. Sungur, S. Ünal, A.B. Iskit, C.A. Squier, and S. Şenel, Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. Journal of controlled release, 2004. 98(2): p. 269-279.
116. Chae, S.Y., M.-K. Jang, and J.-W. Nah, Influence of molecular weight on oral absorption of water soluble chitosans. Journal of controlled release, 2005. 102(2): p. 383-394.
117. Lee, D.-S., S.-H. Eom, Y.-M. Kim, H.S. Kim, M.-J. Yim, S.-H. Lee, D.-H. Kim, and J.-Y. Je, Antibacterial and synergic effects of gallic acid-grafted-chitosan with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA). Canadian journal of microbiology, 2014. 60(10): p. 629-638.
118. Tin, S., C.S. Lim, M.K. Sakharkar, and K.R. Sakharkar, Synergistic combinations of chitosans and antibiotics in Staphylococcus aureus. Letters in Drug Design & Discovery, 2010. 7(1): p. 31-35.
119. Kumar, D., S. Dharmendra, M. Jhansee, N. Shrikant, and S. Pandey, Development and characterization of chitosan nanoparticles loaded with amoxicillin. Int Res J Phar, 2011. 2: p. 145-511.
120. Mousavi, S.M., S.A. Hashemi, A. Gholami, N. Omidifar, M. Zarei, S. Bahrani, K. Yousefi, W.-H. Chiang, and A. Babapoor, Bioinorganic synthesis of polyrhodanine stabilized Fe3O4/Graphene oxide in microbial supernatant media for anticancer and antibacterial applications. Bioinorganic Chemistry and Applications, 2021. 2021.
121. Kiparissides, C. and O. Kammona, Nanoscale carriers for targeted delivery of drugs and therapeutic biomolecules. The Canadian Journal of Chemical Engineering, 2013. 91(4): p. 638-651.
122. Avval, Z.M., L. Malekpour, F. Raeisi, A. Babapoor, S.M. Mousavi, S.A. Hashemi, and M. Salari, Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug metabolism reviews, 2020. 52(1): p. 157-184.
123. Theochari, I., A. Xenakis, and V. Papadimitriou, Nanocarriers for effective drug delivery, in Smart Nanocontainers. 2020, Elsevier. p. 315-341.
124. Mousavi, S.M., F.W. Low, S.A. Hashemi, C.W. Lai, Y. Ghasemi, S. Soroshnia, A. Savardashtaki, A. Babapoor, N. Pynadathu Rumjit, and S.M. Goh, Development of graphene based nanocomposites towards medical and biological applications. Artificial cells, nanomedicine, and biotechnology, 2020. 48(1): p. 1189-1205.
125. Sangtani, A., O.K. Nag, L.D. Field, J.C. Breger, and J.B. Delehanty, Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017. 9(6): p. e1466.
126. Ahmadi, S., M. Fazilati, H. Nazem, and S.M. Mousavi, Green synthesis of magnetic nanoparticles using Satureja hortensis essential oil toward superior antibacterial/fungal and anticancer performance. BioMed Research International, 2021. 2021.
127. Santos-Magalhães, N.S. and V.C.F. Mosqueira, Nanotechnology applied to the treatment of malaria. Advanced drug delivery reviews, 2010. 62(4-5): p. 560-575.
128. Bangham, A.D. and R. Horne, Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of molecular biology, 1964. 8(5): p. 660-IN10.
129. Horne, R., A. Bangham, and V. Whittaker, Negatively stained lipoprotein membranes. Nature, 1963. 200(4913): p. 1340-1340.
130. Bangham, A. and R. Horne, Action of saponin on biological cell membranes. Nature, 1962. 196(4858): p. 952-953.
131. Cheepsattayakorn, A. and R. Cheepsattayakorn, Roles of nanotechnology in diagnosis and treatment of tuberculosis. Journal of Nanotechnology in Diagnosis and Treatment, 2013. 1(1): p. 19-25.
132. Deb, P.K., O. Al-Attraqchi, B. Chandrasekaran, A. Paradkar, and R.K. Tekade, Protein/peptide drug delivery systems: practical considerations in pharmaceutical product development, in Basic Fundamentals of Drug Delivery. 2019, Elsevier. p. 651-684.
133. Cevc, G. and H. Richardsen, Lipid vesicles and membrane fusion. Advanced Drug Delivery Reviews, 1999. 38(3): p. 207-232.
134. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 2005. 4(2): p. 145-160.
135. Stone, N.R., T. Bicanic, R. Salim, and W. Hope, Liposomal amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs, 2016. 76(4): p. 485-500.
136. Moreno-Sastre, M., M. Pastor, A. Esquisabel, and J.L. Pedraz, The Use of Nanoparticles for Antimicrobial Delivery, in New Weapons to Control Bacterial Growth. 2016, Springer. p. 453-487.
137. Lasic, D.D., Novel applications of liposomes. Trends in biotechnology, 1998. 16(7): p. 307-321.
138. Mozafari, M.R., Liposomes: an overview of manufacturing techniques. Cellular and Molecular Biology Letters, 2005. 10(4): p. 711.
139. Gonzalez Gomez, A. and Z. Hosseinidoust, Liposomes for antibiotic encapsulation and delivery. ACS infectious diseases, 2020. 6(5): p. 896-908.
140. Vassallo, A., M.F. Silletti, I. Faraone, and L. Milella, Nanoparticulate Antibiotic Systems as Antibacterial Agents and Antibiotic Delivery Platforms to Fight Infections. Journal of Nanomaterials, 2020. 2020: p. 31.
141. Haley, B. and E. Frenkel. Nanoparticles for drug delivery in cancer treatment. in Urologic Oncology: Seminars and original investigations. 2008. Elsevier.
142. Karyotakis, N.C. and E.J. Anaissie, Amphotericin B lipid complex: recent progress. Drugs of Today, 1996. 32(5): p. 423-432.
143. Mathiowitz, E., Encyclopedia of controlled drug delivery. 1999. 1: p. 461-492.
144. Masoumzadeh, R., Polyethyleneimine-based materials for gene therapy, bioimaging and drug delivery systems applications. Advances in Applied NanoBio-Technologies, 2021. 2(1): p. 13-16.
145. SCHMIDT, P.G., J.P. ADLER-MOORE, E.A. FORSSEN, and R.T. PROFFITT, Unilamellar liposomes for anticancer and antifungal therapy, in Medical Applications of Liposomes. 1998, Elsevier. p. 703-731.
146. Kraft, J.C., J.P. Freeling, Z. Wang, and R.J. Ho, Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. Journal of pharmaceutical sciences, 2014. 103(1): p. 29-52.
147. Shi, J., A.R. Votruba, O.C. Farokhzad, and R. Langer, Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano letters, 2010. 10(9): p. 3223-3230.
148. Takmil, F., H. Esmaeili, S.M. Mousavi, and S.A. Hashemi, Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Advanced Powder Technology, 2020. 31(8): p. 3236-3245.
149. Liu, Y.-C., M.T.-Y. Lin, A.H.C. Ng, T.T. Wong, and J.S. Mehta, Nanotechnology for the treatment of allergic conjunctival diseases. Pharmaceuticals, 2020. 13(11): p. 351.
How to Cite
Yari Kalashgarani M, Babapoor A. Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. AANBT [Internet]. 20Mar.2022 [cited 20Jan.2022];3(1):22-5. Available from: