Nano biofilms: An emerging biotechnology applications

  • Kimia Kazemi
  • Yasmin Ghahramani
  • Masoomeh Yari Kalashgrani university of mohaghegh ardabili
Keywords: Biofilm; Extracellular polymeric substances; Biofouling; Bionanocomposite; Bacterial nanocellulose.

Abstract

Biofilm, a cooperating community of microorganisms, consists of microbial cells attached to the surface. This kind of lifestyle protects microorganisms from environmental threats, prepares higher nutrients for them, and facilitates genetic exchange. However, more sterilant and antibiotics are needed for killing microorganisms in biofilm compared to floating ones. There are various standard methods for detecting biofilms' structure, including Confocal Scanning Laser Microscopy and Atomic Force Microscopy. Some conditions, including hydrodynamics, nutrient availability, surface and interface properties, and content of microbes, will build the biofilm’s structure. Biofilm formation phases include initiation, maturation, maintenance, and dissolution. Biofilms contain extracellular polymeric substances, which cause more mechanical stability, water retention, and nutrient sorption. They may have benefits in the industry, medicine, etc. Some biofilms consist of cellulose bacteria producing bacterial nanocellulose, making the biofilm retain moisture and trap carbon dioxide. These cellulose bacteria can be generated through two methods; static method vs. agitated method.  This review gathered data about biofilm formation, its advantages and disadvantages for microorganisms and environments, and their applications in various areas. In the end, we explain the applications we think they may have.

Downloads

Download data is not yet available.

References

[1] P. Watnick, R. Kolter, Biofilm, city of microbes, Journal of bacteriology 182(10) (2000) 2675-2679.
[2] S.P. Reise, N.G. Waller, Item response theory and clinical measurement, Annual review of clinical psychology 5 (2009) 27-48.
[3] M. Van Loosdrecht, D. Eikelboom, A. Gjaltema, A. Mulder, L. Tijhuis, J. Heijnen, Biofilm structures, Water Science and Technology 32(8) (1995) 35-43.
[4] H.-C. Flemming, Biofouling in water systems–cases, causes and countermeasures, Applied microbiology and biotechnology 59(6) (2002) 629-640.
[5] J.W. Costerton, Introduction to biofilm, International journal of antimicrobial agents 11(3-4) (1999) 217-221.
[6] S.M. Mousavi, S.A. Hashemi, S. Bahrani, K. Yousefi, G. Behbudi, A. Babapoor, N. Omidifar, C.W. Lai, A. Gholami, W.-H. Chiang, Recent advancements in polythiophene-based materials and their biomedical, geno sensor and DNA detection, International Journal of Molecular Sciences 22(13) (2021) 6850.
[7] M. Berlanga, R. Guerrero, Living together in biofilms: the microbial cell factory and its biotechnological implications, Microbial cell factories 15(1) (2016) 1-11.
[8] S.A. Hashemi, S.M. Mousavi, S. Bahrani, S. Ramakrishna, Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes as ultrasensitive electrochemical sensor for precise detection of 4-nitrophenol within aquatic media, Journal of Electroanalytical Chemistry 873 (2020) 114406.
[9] J.S. Dickson, M. Koohmaraie, Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces, Applied and environmental microbiology 55(4) (1989) 832-836.
[10] J. Palmer, S. Flint, J. Brooks, Bacterial cell attachment, the beginning of a biofilm, Journal of Industrial Microbiology and Biotechnology 34(9) (2007) 577-588.
[11] S.M. Mousavi, F.W. Low, S.A. Hashemi, N.A. Samsudin, M. Shakeri, Y. Yusoff, M. Rahsepar, C.W. Lai, A. Babapoor, S. Soroshnia, Development of hydrophobic reduced graphene oxide as a new efficient approach for photochemotherapy, RSC Advances 10(22) (2020) 12851-12863.
[12] R.M. Donlan, Biofilm formation: a clinically relevant microbiological process, Clinical infectious diseases 33(8) (2001) 1387-1392.
[13] C.W. Keevil, A. Godfree, D. Holt, C. Dow, Biofilms in the aquatic environment, Royal society of chemistry Cambridge, UK1999.
[14] D. Ercan, A. Demirci, Current and future trends for biofilm reactors for fermentation processes, Critical reviews in biotechnology 35(1) (2015) 1-14.
[15] S.M. Mousavi, S.A. Hashemi, M. Zarei, S. Bahrani, A. Savardashtaki, H. Esmaeili, C.W. Lai, S. Mazraedoost, M. Abassi, B. Ramavandi, Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris, Data in brief 28 (2020) 104929.
[16] J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science 284(5418) (1999) 1318-1322.
[17] L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nature reviews microbiology 2(2) (2004) 95-108.
[18] M.R. Parsek, P.K. Singh, Bacterial biofilms: an emerging link to disease pathogenesis, Annual Reviews in Microbiology 57(1) (2003) 677-701.
[19] S.M. Mousavi, S.A. Hashemi, A.M. Amani, H. Saed, S. Jahandideh, F. Mojoudi, Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties, Polymers from Renewable Resources 8(4) (2017) 177-196.
[20] H.P. Cheng, P.M. Wang, J.W. Chen, W.T. Wu, Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor, Biotechnology and Applied Biochemistry 35(2) (2002) 125-132.
[21] F. Takmil, H. Esmaeili, S.M. Mousavi, S.A. Hashemi, Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion, Advanced Powder Technology 31(8) (2020) 3236-3245.
[22] C.G. Kumar, S.K. Anand, Significance of microbial biofilms in food industry: a review, International journal of food microbiology 42(1-2) (1998) 9-27.
[23] T. Coenye, H.J. Nelis, In vitro and in vivo model systems to study microbial biofilm formation, Journal of microbiological methods 83(2) (2010) 89-105.
[24] R. Braithwaite, L. McEvoy, Marine biofouling on fish farms and its remediation, Advances in marine biology 47 (2005) 215-252.
[25] G. O'Toole, H.B. Kaplan, R. Kolter, Biofilm formation as microbial development, Annual Reviews in Microbiology 54(1) (2000) 49-79.
[26] C. Prigent-Combaret, O. Vidal, C. Dorel, P. Lejeune, Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli, Journal of bacteriology 181(19) (1999) 5993-6002.
[27] R. Azhdari, S.M. Mousavi, S.A. Hashemi, S. Bahrani, S. Ramakrishna, Decorated graphene with aluminum fumarate metal organic framework as a superior non-toxic agent for efficient removal of Congo Red dye from wastewater, Journal of Environmental Chemical Engineering 7(6) (2019) 103437.
[28] O.E. Petrova, K. Sauer, Escaping the biofilm in more than one way: desorption, detachment or dispersion, Current opinion in microbiology 30 (2016) 67-78.
[29] J. Lawrence, D. Korber, B. Hoyle, J.W. Costerton, D. Caldwell, Optical sectioning of microbial biofilms, Journal of bacteriology 173(20) (1991) 6558-6567.
[30] J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, H.M. Lappin-Scott, Microbial biofilms, Annual review of microbiology 49(1) (1995) 711-745.
[31] D. de Beer, P. Stoodley, Relation between the structure of an aerobic biofilm and transport phenomena, Water Science and Technology 32(8) (1995) 11-18.
[32] D. De Beer, P. Stoodley, F. Roe, Z. Lewandowski, Effects of biofilm structures on oxygen distribution and mass transport, Biotechnology and bioengineering 43(11) (1994) 1131-1138.
[33] T. Schmid, A. Messmer, B.-S. Yeo, W. Zhang, R. Zenobi, Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates, Analytical and bioanalytical chemistry 391(5) (2008) 1907-1916.
[34] S.A. Hashemi, S.M. Mousavi, S. Bahrani, S. Ramakrishna, A. Babapoor, W.-H. Chiang, Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood, Analytica chimica acta 1107 (2020) 183-192.
[35] R. Masoumzadeh, Polyethyleneimine-based materials for gene therapy, bioimaging and drug delivery systems applications, Advances in Applied NanoBio-Technologies 2(1) (2021) 13-16.
[36] P. Stoodley, J.D. Boyle, I. Dodds, H.M. Lappin-Scott, Consensus model of biofilm structure, (1997).
[37] G. Bowden, Y. Li, Nutritional influences on biofilm development, Advances in dental research 11(1) (1997) 81-99.
[38] J.W. Wimpenny, R. Colasanti, A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models, FEMS microbiology ecology 22(1) (1997) 1-16.
[39] M.E. Davey, G.A. O'toole, Microbial biofilms: from ecology to molecular genetics, Microbiology and molecular biology reviews 64(4) (2000) 847-867.
[40] M. Skočaj, Bacterial nanocellulose in papermaking, Cellulose 26(11) (2019) 6477-6488.
[41] S. Mousavi, M. Zarei, S. Hashemi, Polydopamine for biomedical application and drug delivery system, Med Chem (Los Angeles) 8 (2018) 218-29.
[42] S.M. Mousavi, S.A. Hashemi, S. Mazraedoost, K. Yousefi, A. Gholami, G. Behbudi, S. Ramakrishna, N. Omidifar, A. Alizadeh, W.-H. Chiang, Multifunctional gold nanorod for therapeutic applications and pharmaceutical delivery considering cellular metabolic responses, oxidative stress and cellular longevity, Nanomaterials 11(7) (2021) 1868.
[43] C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature nanotechnology 3(7) (2008) 423-428.
[44] A. Gholami, S.A. Hashemi, K. Yousefi, S.M. Mousavi, W.-H. Chiang, S. Ramakrishna, S. Mazraedoost, A. Alizadeh, N. Omidifar, G. Behbudi, 3D nanostructures for tissue engineering, cancer therapy, and gene delivery, Journal of Nanomaterials 2020 (2020).
[45] F. Yoshinaga, N. Tonouchi, K. Watanabe, Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material, Bioscience, biotechnology, and biochemistry 61(2) (1997) 219-224.
[46] Y. Chao, T. Ishida, Y. Sugano, M. Shoda, Bacterial cellulose production by Acetobacter xylinum in a 50‐L internal‐loop airlift reactor, Biotechnology and bioengineering 68(3) (2000) 345-352.
[47] P.R. Chawla, I.B. Bajaj, S.A. Survase, R.S. Singhal, Microbial cellulose: fermentative production and applications, Food Technology and Biotechnology 47(2) (2009) 107-124.
[48] D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose—artificial blood vessels for microsurgery, Progress in polymer science 26(9) (2001) 1561-1603.
[49] S.M. Mousavi, S.A. Hashemi, S. Ramakrishna, H. Esmaeili, S. Bahrani, M. Koosha, A. Babapoor, Green synthesis of supermagnetic Fe3O4–MgO nanoparticles via Nutmeg essential oil toward superior anti-bacterial and anti-fungal performance, Journal of Drug Delivery Science and Technology 54 (2019) 101352.
[50] M. Hornung, M. Ludwig, H. Schmauder, Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3), Engineering in Life Sciences 7(1) (2007) 35-41.
[51] D. Kralisch, N. Hessler, D. Klemm, R. Erdmann, W. Schmidt, White biotechnology for cellulose manufacturing—the HoLiR concept, Biotechnology and bioengineering 105(4) (2010) 740-747.
[52] K. Watanabe, M. Tabuchi, Y. Morinaga, F. Yoshinaga, Structural features and properties of bacterial cellulose produced in agitated culture, Cellulose 5(3) (1998) 187-200.
[53] H.-J. Song, H. Li, J.-H. Seo, M.-J. Kim, S.-J. Kim, Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes, Korean Journal of Chemical Engineering 26(1) (2009) 141-146.
[54] H.-C. Flemming, J. Wingender, The biofilm matrix, Nature reviews microbiology 8(9) (2010) 623-633.
[55] S.M. Mousavi, M. Zarei, S.A. Hashemi, A. Babapoor, A.M. Amani, A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities, Artificial cells, nanomedicine, and biotechnology 47(1) (2019) 1132-1148.
[56] G.B. Whitfield, L.S. Marmont, P.L. Howell, Enzymatic modifications of exopolysaccharides enhance bacterial persistence, Frontiers in microbiology 6 (2015) 471.
[57] S. Bahrani, S.A. Hashemi, S.M. Mousavi, R. Azhdari, Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study, Drug metabolism reviews 51(3) (2019) 356-377.
[58] T. Seviour, N. Derlon, M.S. Dueholm, H.-C. Flemming, E. Girbal-Neuhauser, H. Horn, S. Kjelleberg, M.C. van Loosdrecht, T. Lotti, M.F. Malpei, Extracellular polymeric substances of biofilms: Suffering from an identity crisis, Water research 151 (2019) 1-7.
[59] T. Seviour, Z. Yuan, M.C. van Loosdrecht, Y. Lin, Aerobic sludge granulation: a tale of two polysaccharides?, Water Research 46(15) (2012) 4803-4813.
[60] M. Frieri, K. Kumar, A. Boutin, Antibiotic resistance, Journal of infection and public health 10(4) (2017) 369-378.
[61] Z.M. Avval, L. Malekpour, F. Raeisi, A. Babapoor, S.M. Mousavi, S.A. Hashemi, M. Salari, Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application, Drug metabolism reviews 52(1) (2020) 157-184.
[62] S. Ahmadi, M. Fazilati, S.M. Mousavi, H. Nazem, Anti-bacterial/fungal and anti-cancer performance of green synthesized Ag nanoparticles using summer savory extract, Journal of Experimental Nanoscience 15(1) (2020) 363-380.
[63] S.N. Abootalebi, S.M. Mousavi, S.A. Hashemi, E. Shorafa, N. Omidifar, A. Gholami, Antibacterial Effects of Green-Synthesized Silver Nanoparticles Using Ferula asafoetida against Acinetobacter baumannii Isolated from the Hospital Environment and Assessment of Their Cytotoxicity on the Human Cell Lines, Journal of Nanomaterials 2021 (2021).
[64] S. Bengtsson, M. de Blois, B.-M. Wilén, D. Gustavsson, Treatment of municipal wastewater with aerobic granular sludge, Critical Reviews in Environmental Science and Technology 48(2) (2018) 119-166.
[65] S.M. Mousavi, S.A. Hashemi, A. Gholami, N. Omidifar, M. Zarei, S. Bahrani, K. Yousefi, W.-H. Chiang, A. Babapoor, Bioinorganic synthesis of polyrhodanine stabilized Fe3O4/Graphene oxide in microbial supernatant media for anticancer and antibacterial applications, Bioinorganic Chemistry and Applications 2021 (2021).
[66] P.A. Rühs, F. Storz, Y.A.L. Gómez, M. Haug, P. Fischer, 3D bacterial cellulose biofilms formed by foam templating, npj Biofilms and Microbiomes 4(1) (2018) 1-6.
[67] S.M. Mousavi, S. Soroshnia, S.A. Hashemi, A. Babapoor, Y. Ghasemi, A. Savardashtaki, A.M. Amani, Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications, Drug metabolism reviews 51(1) (2019) 91-104.
[68] S.M. Mousavi, F.W. Low, S.A. Hashemi, C.W. Lai, Y. Ghasemi, S. Soroshnia, A. Savardashtaki, A. Babapoor, N. Pynadathu Rumjit, S.M. Goh, Development of graphene based nanocomposites towards medical and biological applications, Artificial cells, nanomedicine, and biotechnology 48(1) (2020) 1189-1205.
[69] R.A. Ilyas, S.M. Sapuan, M.R. Ishak, E.S. Zainudin, Water transport properties of bio-nanocomposites reinforced by sugar palm (Arenga Pinnata) nanofibrillated cellulose, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal 51(2) (2018) 234-246.
[70] S. Ahmadi, M. Fazilati, H. Nazem, S.M. Mousavi, Green synthesis of magnetic nanoparticles using Satureja hortensis essential oil toward superior antibacterial/fungal and anticancer performance, BioMed Research International 2021 (2021).
[71] D. Paul, G. Pandey, J. Pandey, R.K. Jain, Accessing microbial diversity for bioremediation and environmental restoration, TRENDS in Biotechnology 23(3) (2005) 135-142.
[72] A.W. Decho, Microbial biofilms in intertidal systems: an overview, Continental shelf research 20(10-11) (2000) 1257-1273.
[73] T. Barkay, J. Schaefer, Metal and radionuclide bioremediation: issues, considerations and potentials, Current opinion in microbiology 4(3) (2001) 318-323.
[74] H.-C. Flemming, Sorption sites in biofilms, Water Science and Technology 32(8) (1995) 27.
[75] H. Horn, E. Morgenroth, Transport of oxygen, sodium chloride, and sodium nitrate in biofilms, Chemical Engineering Science 61(5) (2006) 1347-1356.
[76] C. Nicolella, M.C. van Loosdrecht, S.J. Heijnen, Particle-based biofilm reactor technology, Trends in Biotechnology 18(7) (2000) 312-320.
[77] S.M. Mousavi, S.A. Hashemi, A.M. Amani, H. Esmaeili, Y. Ghasemi, A. Babapoor, F. Mojoudi, O. Arjomand, Pb (II) removal from synthetic wastewater using Kombucha Scoby and graphene oxide/Fe3O4, Physical Chemistry Research 6(4) (2018) 759-771.
[78] X.Z. Li, J.S. Webb, S. Kjelleberg, B. Rosche, Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production, Applied and environmental microbiology 72(2) (2006) 1639-1644.
[79] M.R. Kunduru, A. Pometto, Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors, Journal of industrial microbiology 16(4) (1996) 249-256.
[80] S.F. Dagher, A.L. Ragout, F. Sineriz, J.M. Bruno-Bárcena, Cell immobilization for production of lactic acid: biofilms do it naturally, Advances in applied microbiology 71 (2010) 113-148.
[81] Y. Cohen, Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review, Bioresource technology 77(3) (2001) 257-274.
[82] Z.-W. Wang, S. Chen, Potential of biofilm-based biofuel production, Applied microbiology and biotechnology 83(1) (2009) 1-18.
[83] B. Guggenheim, M. Guggenheim, R. Gmür, E. Giertsen, T. Thurnheer, Application of the Zürich biofilm model to problems of cariology, Caries research 38(3) (2004) 212-222.
[84] S.M. Mousavi, S.A. Hashemi, S. Salahi, M. Hosseini, A.M. Amani, A. Babapoor, Development of clay nanoparticles toward bio and medical applications, IntechOpen2018.
[85] J.D. Fontana, V.C. Franco, S.J. De Souza, I.N. Lyra, A.M. De Souza, Nature of plant stimulators in the production of Acetobacter xylinum (“tea fungus”) biofilm used in skin therapy, Applied biochemistry and biotechnology 28(1) (1991) 341-351.
[86] E. Caliskan, D.R. De Souza, A. Böning, O.J. Liakopoulos, Y.-H. Choi, J. Pepper, C.M. Gibson, L.P. Perrault, R.K. Wolf, K.-B. Kim, Saphenous vein grafts in contemporary coronary artery bypass graft surgery, Nature Reviews Cardiology 17(3) (2020) 155-169.
[87] S.M. Mousavi, S.A. Hashemi, A.M. Amani, H. Saed, S. Jahandideh and F. Mojoudi, Polyethylene terephthalate/acryl butadiene styrene copolymer incorporated with oak shell, potassium sorbate and egg shell nanoparticles for food packaging applications: control of bacteria growth, physical and mechanical properties, Polymers from Renewable Resources 8 (2017), pp. 177-196.
[88] D. Klemm, F. Rauchfuss, F. Kramer, K. Petzold-Welcke, T. Richter, C. Ruhe, A. Tannapfel, Design of biocellulose implants for first successful bile duct regeneration, ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2016.
[89] S. Mousavi, A. Aghili, S. Hashemi, N. Goudarzian, Z. Bakhoda and S. Baseri, Improved morphology and properties of nanocomposites, linear low density polyethylene, ethylene-co-vinyl acetate and nano clay particles by electron beam, Polymers from Renewable Resources 7 (2016), pp. 135-153.
[90] A. Alipour and M.Y. Kalashgarani, Nano Protein and Peptides for Drug Delivery and Anticancer Agents, Advances in Applied NanoBio-Technologies (2022), pp. 60-64.
[91] D. Klemm, K. Petzold-Welcke, F. Kramer, T. Richter, V. Raddatz, W. Fried, S. Nietzsche, T. Bellmann, D. Fischer, Biotech nanocellulose: A review on progress in product design and today’s state of technical and medical applications, Carbohydrate Polymers 254 (2021) 117313.
[92] S.M. Mousavi, S.A. Hashemi, M.Y. Kalashgrani, N. Omidifar, S. Bahrani, N. Vijayakameswara Rao, A. Babapoor, A. Gholami and W.-H. Chiang, Bioactive Graphene Quantum Dots Based Polymer Composite for Biomedical Applications, Polymers 14 (2022), p. 617.
[93] A. Gholami, S.M. Mousavi, S.A. Hashemi, Y. Ghasemi, W.-H. Chiang, N. Parvin, Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy, Drug metabolism reviews 52(1) (2020) 205-224.
[94] S. Mousavi, H. Esmaeili, O. Arjmand, S. Karimi and S. Hashemi, Biodegradation study of nanocomposites of phenol novolac epoxy/unsaturated polyester resin/egg shell nanoparticles using natural polymers, Journal of Materials 2015 (2015), pp. 1-6.
[95] M.Y. Kalashgarani and A. Babapoor, Application of nano-antibiotics in the diagnosis and treatment of infectious diseases, Advances in Applied NanoBio-Technologies (2022), pp. 22-35.
Published
2022-06-20
How to Cite
1.
Kazemi K, Ghahramani Y, Yari Kalashgrani M. Nano biofilms: An emerging biotechnology applications. AANBT [Internet]. 20Jun.2022 [cited 7Dec.2022];3(2):8-5. Available from: https://www.dormaj.org/index.php/AANBT/article/view/537