Biological Processes of Heavy Metals-Contaminated Environmental Remediation: A Review

  • Mohammad Moneruzzaman Khandaker School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
  • Umar Aliyu Abdullahi School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
  • Nurul Elyni School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
  • Nadiawati Alias School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
Keywords: Heavy metals, Bioremediation, Mycoremediation, Phytoremediation

Abstract

Environmental contamination as a result of utilization of chemicals such as pesticide, fertilizer, radioactive nucleotide and organic substances has serious deteriorating effect to the environmental (soil, water and air) quality.  To restore the integrity of our environment, different scientific approaches are put forward including bioremediation, mycoremediation and phytoremediation processes where all of which are eco-friendly. Both bacteria, fungi and plants use extracellular secretion, adsorption and biosorption processes to remove/convert toxic pollutants such as heavy metals into less toxic matter; uptake and bioaccumulate the environmental contaminants and sequester them. bacteria use to sequester heavy metal with the help of low molecular weight cysteine-rich proteins glutathione, fungi use plastocyanin, metallothionein and glutathione, whereas plants use phytochelatins and metallothioneins. This review provides broader focus on involvement of bacteria, fungi and plants in alleviating heavy metals from contaminated environment and mechanisms involves.

References

Nas, F. S. and Ali, M.. “The effect of lead on plants in terms of growing and biochemical parameters: a review”. MOJ Eco Environ Sci. 2018;3(4):265‒268

Alloway, B. J.. “Sources of Heavy Metals and Metalloids in Soils”. Heavy Metals in Soils, 2012;11–50.

Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Yttri, K. E.. “Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009”. Atmospheric Chemistry and Physics, 2012;12(12), 5447–5481.

Damodaran, D., Balakrishnan, R. M., & Shetty, V. K.. “The Uptake Mechanism of Cd (II), Cr (VI), Cu (II), Pb (II), and Zn (II) by Mycelia and Fruiting Bodies of Galerina vittiformis”. BioMed Research International, 2013;1–11.

Singh J. and Kalamdhad A.S. (2011). “Effects of Heavy Metals on Soil, Plants, Human Health and Aquatic Life”. Int. J. Res. Chem. Environ. 2011;1(2)15-21

Tripathi, S., Arora, N., Gupta, P., Pruthi, P. A., Poluri, K. M., & Pruthi, V. “Microalgae”. Advanced Biofuels, 2019;97–128.

Duruibe J.O., Ogwuegbu M.O.C. and Egwurugwu J.N., (2007). “Heavy metal pollution and human biotoxic effects”. International Journal of Physical Sciences, 2007; 2 (5), 112-118.

Calvaruso, C., Turpault, M. P., & Frey-Klett, P. “Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: A budgeting analysis”. Applied Environmental Microbiology, 2006;72, 1258–1266.

Chorover, J., Kretzschmar, R., Garcia-Pichel, F., & Sparks, D. L. “Soil biogeochemical processes within the critical zone”. Elements, 2007;35, 321–326.

Ahmad MS, Ashraf M. “Essential roles and hazardous effects of nickel in plants”. Review Environmental Contamination Toxicology. 2011; 214:125-67.

Ashraf, M. Y., Sadiq, R., Hussain, M., Ashraf, M., & Ahmad, M. S. A. Toxic Effect of Nickel (Ni) on Growth and Metabolism in Germinating Seeds of Sunflower (Helianthus annuus L.). Biological Trace Element Research, 2011;143(3), 1695–1703.

Bhattacharyya P., Chakrabarti K., Chakraborty A., Tripathy S. and Powell M.A., “Fractionation and bioavailability of Pb in municipal solid waste compost and Pb uptake by rice straw and grain under submerged condition in amended soil”. Geosciences Journal, 2008;12, (1), 41 –45

Vig, K. “Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review”. Advances in Environmental Research, 2003;8(1), 121–135.

Sanità di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999;41, 105–130.

Khayatzadeh J. and Abbasi E. “The Effects of Heavy Metals on Aquatic Animals”. The 1 st International Applied Geological Congress, Department of Geology, Islamic Azad University - Mashad Branch, Iran, 26-28 April 2010

Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian,M., Sheng, X. F. “Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland”. Bioresource Technology 2010;101, 501509.

Lee, J.-W., Choi, H., Hwang, U.-K., Kang, J.-C., Kang, Y. J., Kim, K. I., & Kim, J.-H.. “Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review”. Environmental Toxicology and Pharmacology 2019; (68):101–108

Okocha R.C. and Adedeji O.B.” Overview of Cadmium Toxicity in Fish”. J. Appl. Sci. Res., 2011;7(7): 1195-1207

Olojo, E.A.A., Olurin, K.B., Mbaka G.and A.D. Oluwemimo, “Histopathology of gill and liver tissue of the african catfish Clarias gariepinus exposed to lead”. African J. Biotechnol. 2005; 4(1) 117-122.

Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 2011; 1–31.

Tekere M. Biological Strategies for Heavy Metal Remediation. In: Inamuddin, Ahamed M.I., Lichtfouse E., Asiri A.M. (eds) Methods for Bioremediation of Water and Wastewater Pollution. Environmental Chemistry for a Sustainable World, 2020; 51. Springer, Cham.

Sharma, I. Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects, Trace Metals in the Environment - New Approaches and Recent Advances, Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid, IntechOpen, 2020. DOI: 10.5772/intechopen.90453.

Ayangbenro, A., & Babalola, O.. “A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents”. International Journal of Environmental Research and Public Health, 2017;14(1), 94.

Brar S.K., Verma M., Surampalli R., Misra K., Tyagi R., Meunier N., Blais J.. “Bioremediation of hazardous wastes—A review. Pract. Period. Hazard”. Toxic Radioact. Waste Manag. 2006;10: 59–72.

Wei W, Liu X, Sun P, Wang X, Zhu H, Hong M, Mao ZW, Zhao J.. “Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon”. Environ Sci Technol. 2014;18; 48(6):3363-71.

Comte S, Guibaud G, Baudu M Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values J Hazard Mater. 2008;151(1):185-93.

Chen, X., Zhao, Y., Zhang, C., Zhang, D., Yao, C., Meng, Q., … Wei, Z. “Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed”. Journal of Environmental Management, 2020;272, 111109.

Silva-Castro GA, Uad I, Gónzalez-López J, Fandiño CG, Toledo FL, Calvo C. “Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology”. Clean Technol Environ Policy. 2012;14:719–726.

Ramasamy, K. Kamaludeen, S. and Parwin, B. “Bioremediation of metals microbial processes and techniques,” in Environmental Bioremediation Technologies, S. N. Singh and R. D. Tripathi, Eds., pp. 2006;173–187, Springer Publication, New York, NY, USA.

Rigoletto, M., Calza, P., Gaggero, E., Malandrino, M., & Fabbri, D. “Bioremediation Methods for the Recovery of Lead-Contaminated Soils: A Review”. Applied Sciences, 2020;10(10), 3528.

Meena K. and Sarita S. “Bioremediation Options for Heavy Metal Pollution”. Journal of Health and Pollution: 2019;9(24): 191203

Wu, G. Kang, H. Zhang, X. Shao, H. Chu, L. and Ruan, C. “A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities,” Journal of Hazardous Materials, 2010;174(13), pp. 1–8.

Wiatrowski HA, Ward PM, Barkay T. “Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria”. Environ Sci Technol. 2006;40(21):6690-6.

Bachate SP, Khapare RM, Kodam KM. “Oxidation of arsenite by two β-proteobacteria isolated from soil”. Appl Microbiol Biotechnol. 2012;93(5):2135-45.

Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. “Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?” J Hazard Mater. 2014 Feb 15; 266:141-66.

Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G. “Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase”. Sci Total Environ. 2006;367(1):383-93.

Fomina M, Gadd GM. “Biosorption: current perspectives on concept, definition and application” Bioresour Technol. 2014;160:3-14.

Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP. “Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids”. Front Plant Sci.; 2016;7():303

Gadd GM. “Bioremedial potential of microbial mechanisms of metal mobilization and immobilization”. Curr Opin Biotechnol. 2000;11(3):271-9.

Jin, Y., Luan, Y., Ning, Y., & Wang, L. “Effects and Mechanisms of Microbial Remediation of Heavy Metals in Soil: A Critical Review”. Applied Sciences, 2018;8(8), 1336.

Higham, D. P. Sadler, P. J. and Scawen, “M. D. “Cadmium-binding proteins in pseudomonas putida: Pseudothioneins,” Environmental Health Perspectives, 1986;65: 5–11,

Lima, A. I. G. Corticeiro, S. C. and de Almeida Paula Figueira, E. M. “Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum,” Enzyme and Microbial Technology, 2006;39(4), pp. 763–769

Gavrilescu, M.. “Removal of heavy metals from the environment by biosorption,” Engineering in Life Sciences, 2004;4(3) pp. 219–232.

Bruschi M. and Florence, G. “New bioremediation technologies to remove heavy metals and radionuclides using Fe (III)-, sulfate-and sulfur-reducing bacteria,” in Environmental Bioremediation Technologies, S. N. Singh and R. D. Tripathi, Eds., 2006:35–55.

Abioye, O. P. Oyewole, O. A. Oyeleke, S. B. Adeyemi, M. O. and Orukotan, A. A. “Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms,” Brazilian Journal of Biological Sciences, 2018;5(9): 25–32.

Zhang, B., Hao, L., Tian, C., Yuan, S., Feng, C., Ni, J., & Borthwick, A. G. L.. “Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture”. Bioresource Technology, 2015;192, 410–417

Kim, I. H. Choi, J.-H. Joo, J. O. Kim, Y.-K. Choi, J.-W and Oh, B.-K. “Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater,” Journal of Microbiology and Biotechnology, 2015; 25( 9): 1542–1546.

Sharma, P. K. Balkwill, D. L. Frenkel, A. and Vairavamurthy, M. A.. “A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide,” Applied and Environmental Microbiology, 2000;66(7): 3083–3087.

Ramasamy, K. Kamaludeen, S. and Parwin, B. “Bioremediation of metals microbial processes and techniques,” in Environmental Bioremediation Technologies, S. N. Singh and R. D. Tripathi, Eds., 2006:173–187, Springer Publication, New York, NY, USA.

De Jaysankar. Ramaiah, N. and Vardanyan, L. “Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury,” Marine Biotechnology, 2008;10(4): 471–477.

Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. “Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review”. Journal of Toxicology, 2018;1–16

Verma, S., and Kuila, A. “Bioremediation of heavy metals by microbial process”. Environmental Technology & Innovation, 2019;100369.

Gabriel J., Kofronova O., Rychlovsky P. and Krenzelok M. Accumulation and effect of cadmium in the wood rotting basidiomycete, Daedaleaquercina. Bulletin of Environmental Contamination and Toxicology, 1996;57:383-390.

Chibuike, G. U., & Obiora, S. C. “Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods”. Applied and Environmental Soil Science, 2014; 1–12.

Sar, P., D'Souza, S.F. “Biosorptive uranium uptake by a Pseudomonas strain: Characterization and equilibrium studies”. Journal of Chemical Technology and Biotechnology. 2001;76(12): 1286-1294

Gunasekaran P., Rajendran, P. Muthukrishnan J. “Microbes in heavy metal remediation”. Indian J exp bio. 2003; 41:935-944.

Cha, J.-S., and D. A. Cooksey. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 1991;88:8915-8919.

Perelo, L.W., “Review: In situ and bioremediation of organic pollutants in aquatic sediments”. Journal of Hazardous Materials. 2010;177 (1–3), 81–89.

Bharath Y, Singh SN, Keerthiga G, Prabhakar R. “Mycoremediation of contaminated soil in MSW sites”. In: Ghosh SK, editor. Waste Management and Resource Efficiency. Singapore: Springer Nature. 2019; 321-329.

Joutey NT, Bahafid W, Sayel H, El Ghachtouli N. Biodegradation: “Involved microorganisms and genetically engineered microorganisms”. In: Chamy R, Rosenkranz F, editors. Biodegradation. London, UK: IntechOpen Limited; 2013;290-320.

Barh, A., Kumari, B., Sharma, S., Annepu, S. K., Kumar, A., Kamal, S., & Sharma, V. P. “Mushroom mycoremediation: kinetics and mechanism”. Smart Bioremediation Technologies, 2019; 1–22.

Raj DD, Mohan B, Vidya Shetty BM. “Mushrooms in the remediation of heavy metals from soil”. International Journal of Environmental Pollution Control and Management. 2011;3:89-101

Ali, A., Guo, D., Mahar, A., Wang, P., Shen, F., Li, R., and Zhang, Z. Mycoremediation of Potentially Toxic Trace Elements—a Biological Tool for Soil Cleanup: A Review. Pedosphere, 2017;27(2), 205–222.

Srivastava S. and Thakur, I. S. “Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent,” Bioresource Technology, 2006; 97(10):1167–1173.

Lakkireddy K. and Kües, U. “Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations,” AMB Express, 2017; 7(1): 28.

Park, D. Yun, Y.-S. Jo, J. H.and Park, J. M. “Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger,” Water Research, 2005;39(4): 533–540.

Luna, J. M. Rufino, R. D. and Sarubbo, L. A. “Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties,” Process Safety and Environmental Protection, 2016;102: 558–566.

Chatterjee, S. Chatterjee, C. N. and Dutta, S. “Bioreduction of chromium (VI) to chromium (III) by a novel yeast strain Rhodotorula mucilaginosa (MTCC9315),” African Journal of Biotechnology, 2012;1:14920–14929.

Khan, I., Aftab, M., Shakir, S., Ali, M., Qayyum, S., Rehman, M. U., Touseef, I. “Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates”. Environmental Monitoring and Assessment, 2019;191(9).

Fawzy E. M., Abdel-Motaal F. F., Soad A., El-Zayat S. A. “Biosorption of heavy metals onto different eco-friendly substrates”. Journal of Bioremediation and Biodegradation. 2017;8(3):1–7.

Grujić S., Vasić S., Radojević I., Čomić L., Ostojić A. “Comparison of the Rhodotorula mucilaginosa biofilm and planktonic culture on heavy metal susceptibility and removal potential”. Water Air Soil Pollution. 2017;228(73):1–8.

Yang J., Wang Q., Luo Q., Wang Q., Wud T. “Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger”. Biochemical and Engineering Journal. 2009; 46:294–299.

Rivas-Castillo A. M., Guatemala-Cisneros M. E., Rojas-Avelizapa N. G. “Effect of aluminium in Bacillus megaterium nickel resistance and removal capability”. Mexican Journal of Biotechnology. 2017;2(2):206–220.

Prado FE, Hilal M, Chocobar-Ponce S, Pagano E, Rosa M, Prado C. “Chromium and the plant: a dangerous affair? In: Plant metal interaction”. Elsevier. 2016; 149–177.

Wenzel, W. W. “Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils”. Plant and Soil, 2008;321(1-2), 385–408.

Peng, K., Li, X., Luo, C., Shen, Z. “Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China”. J. Environ. Sci. Health. 2006; 41, 65–76.

Wei W, Liu X, Sun P, Wang X, Zhu H, Hong M, Mao ZW, Zhao J. “Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon”. Environ Sci Technol. 2014;18; 48(6):3363-71.

Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. “Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land”. Frontiers in Plant Science, 2020; 11(359).

Gupta, D. K., Vandenhove, H., and Inouhe, M. “Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants,” in Heavy Metal Stress in Plants, eds D. K. Gupta, F. J. Corpas, and J. M. Palma (Berlin: Springer), 2013;73–94.

Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I., and Salt, D. E. “Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species”. Plant Physiol. 2000;122, 1343–1354.

Sun, R., Zhou, Q., & Jin, C. “Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator”. Plant and Soil, 2006;285(1-2), 125–134.

Sarret, G., Saumitou-Laprade, P., Bert, V., Proux, O., Hazemann, J.-L., Traverse, A., et al. “Forms of zinc accumulated in the hyperaccumulator Arabidopsis helleri”. Plant Physiol. 2002;130, 1815–1826.

Cho-Ruk, K. Kurukote, J. Supprung, P. and Vetayasuporn, S. “Perennial plants in the phytoremediation of leadcontaminated soils,” Biotechnology, 2006:5(1), 1–4,

Domínguez−Solís, J. R., López−Martín, M. C., Ager, F. J., Ynsa, M. D., Romero, L. C., and Gotor, C. “Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana”. Plant Biotechnol. J. 2004;2, 469–476

Harper FA, Baker AJM, Balkwill K, Smith JAC. Nickel uptake, translocation and hyperaccumulation in Berkheya coddii. In: Abstracts of the Third International Conference on Serpentine Ecology, Kruger National Park, South Africa. 1999

Roy, S. B., and Bera, A. “Individual and combined effect of mercury and manganese on phenol and proline content in leaf and stem of mung bean seedlings”. J. Environ. Biol. 2002; 23, 433–435.

van Hoof, N. A., Hassinen, V. H., Hakvoort, H. W., Ballintijn, K. F., Schat, H., Verkleij, J. A., et al. “Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gen”e. Plant Physiol. 2001;126, 1519–1526.

Alkorta I, Hernández-Allica J, Becerril JM et al. “Chelateenhanced phytoremediation of soils polluted with heavy metals”. Rev Environ Sci Biotechnol. 2004; 3:55–70.

Sheoran, V., Sheoran, A., Poonia, P., “Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review”. Crit. Rev. Environ. Sci. Technol. 2011;41, 168–214.

Malik, N., Biswas, A.K. “Role of higher plants in remediation of metal contaminated sites”. Sci. Rev. Chem. Commun. 2012;2, 141–146.

Published
2021-04-30
How to Cite
Khandaker, M., Abdullahi, U. A., Elyni, N., & Alias, N. (2021). Biological Processes of Heavy Metals-Contaminated Environmental Remediation: A Review. Journal of Environmental Treatment Techniques, 9(3), 601-608. https://doi.org/10.47277/JETT/9(3)608
Section
Regular publication process