Exploring the Photocatalytic Activity of Mn & Al Incorporated MCM-41 towards the Removal of Rhodamine B and Congo Red Dyes under Visible Light and their Kinetic Study

  • Prathipati Jaya Ranga Rao Department of Chemistry, Baba Institute of Technology & Sciences (BITS), Visakhapatnam-530041, Andhra Pradesh, India
  • Paul Douglas Sanasi Department of Engineering Chemistry, AU College of Engineering (A), Andhra University, Visakhapatnam-530003, Andhra Pradesh, India https://orcid.org/0000-0002-5839-0959
Keywords: mesoporous silica, photocatalysis, scavengers, Rhodamine B, Congo red


Manganese and Aluminum incorporated mesoporous silica materials (Mn & Al-MCM-41) were synthesized using the co-precipitation method. They have been characterized using XRD, SEM-EDX, FTIR, surface area (SBET, m2.g-1), and UV-Vis DRS spectral studies.  The spectral analysis explored that the mesoporosity was retained even after the acid functionalization of materials. There was a significant fall in the surface area (SBET, m2.g-1), pore size (Å), and pore volume (cc. g-1) on merging Mn and Al atoms into the skeleton of MCM-41. Their light absorption was found to be profound in the visible light as observed from the UV-Vis DRS analysis, and pertaining to these results, their suitability as photocatalysts were examined towards the oxidative removal of a xanthene (Rhodamine B) and an azo dye (Congo red). Scavengers experiment revealed that both OH· (hydroxyl radicals) and O2·- (superoxide radical ions) were the active oxidative species in the removal of the dyes. In the kinetic profile analysis, the rate of removal of the dyes was found to meet the Langmuir-Hinshelwood (L-H) kinetic model.


Download data is not yet available.

Author Biography

Prathipati Jaya Ranga Rao, Department of Chemistry, Baba Institute of Technology & Sciences (BITS), Visakhapatnam-530041, Andhra Pradesh, India

Assistant Professor,

Department of Chemistry, Baba Institute of Technology & Sciences (BITS), Visakhapatnam-530041, Andhra Pradesh, India


Beck JS, US Patent 5057296 (1991).

Kresge CT, Leonowicz, ME, Roth, WJ, Vartuli, JC, Beck JS, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 1992; 359: 710-712. doi.org/10.1038/359710a0

Beck JS, Vartuli JC, Roth, WJ, Leonowicz, ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCulle SB, Higgins JB, Schlender, JL, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 1992; 114: 10834-10843. doi.org/10.1021/ja00053a020.

Zhao XS, Lu GQ, Millar, GJ, Advances in mesoporous molecular sieves, Ind. Eng. Chem. Res. 1996; 35 (7): 2075-2090. doi.org/10.1021/ie950702a.

Mercier L, Pinnavaia TJ, Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater. 1997; 9(6): 500-503. doi.org/10.1002/adma.19970090611.

Corma A, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 1997; 97 (6): 2373-2420. doi.org/10.1021/cr960406n.

Karthik M, Tripathi AK, Gupta NM, Vinu A, Hartmann M, Palanichamy M, Murugesan V, Characterization of Co, Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol, Applied Catalysis A: General 2004; 268 (1-2): 139–149.

Tanev PT, Chibwe M, Pinnavaia, TJ, Titanium containing mesoporous molecular sieves for catalytic oxidation of organic compounds, Nature 1994; 368: 321-323. doi.org/10.1038/368321a0.

Tuel A, Modification of mesoporous silicas by incorporation of hetero atoms in the frame work, Micropor. Mesopor. Mater. 1999; 27 (2-3): 151-169. doi.org/10.1016/S1387-1811(98)00250-9.

Lim S, Haller, GL, Gas phase methanol oxidation on VMCM-41, Appl. Catal. A: Gen. 1999; 188 (1-2): 277-286. doi:10.1016/S0926-860X(99)00213-6

Selvaraj M, Sinha PK, Lee K, Ahn I, Pandurangan A, Lee TG, Synthesis and characterization of Mn-MCM-41 and Zr-Mn-MCM-41, Micropor. Mesopor. Mater. 2005; 78 (2-3): 139–149. doi.org/10.1016/j.micromeso.2004.10.004

Kefu Z, Xiao DX, Chang TC, Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products, App. Surf. Sci. 2017; 416: 248-258. doi.org/10.1016/j.apsusc.2017.04.174.

Luan L, Cheng CF, Zhou W, Klinowski J, Mesopore molecular sieve MCM-41 containing framework aluminum, J. Phys. Chem. 1995; 99 (3): 1018-1024. doi.org/10.1021/j100003a026.

Mokaya R, Jones W, Acidity and catalytic activity of aluminosilicate mesoporous molecular sieves prepared using primary amines, J. Chem. Soc. Chem. Commun. 1996; 8: 983-984. doi.org/10.1039/CC9960000983.

Schmidt R, Akporiaye D, Stocker M, Ellestad OH, Synthesis of a mesoporous MCM-41 material with high levels of tetrahedral Aluminum, J. Chem. Soc. Chem. Commun. 1994; 12: 1493-1494. doi.org/10.1039/C39940001493.

Selvaraj M, Pandurangan A, Seshadri KS, Sinha PK, Krishanasamy V, Lal KB, Comparison of mesoporous Al-MCM-41 molecular sieves in the production of cumene for isopropylation of toluene, J. Mol. Cata. A. Chem. 2002; 186(1-2): 173-186. doi.org/10.1016/S1381-1169(02)00134-6.

Zhao D, Goldfarb D, Synthesis of mesoporous manganosilicates: Mn-MCM-41, Mn-MCM-48, Mn-MCM-L, J. Chem. Soc. Chem. Commun. 1995: 875-876. doi.org/10.1039/C39950000875.

Vetrivel S, Pandurangan A, Side-chain oxidation of ethylbenzene with tert-butylhydroperoxide over mesoporous Mn-MCM-41 molecular sieves, J. Mol. Catal. A. Chem. 2004; 217 (1-2): 165-174. doi.org/10.1016/j.molcata.2004.03.022.

Vetrivel S, Pandurangan A, Vapour-phase oxidation of ethylbenzene with air over Mn-containing MCM-41 mesoporous molecular sieves, Appl. Catal. A. Gen. 2004; 264 (2): 243-252. doi.org/10.1016/j.apcata.2003.12.047.

Pandurangan A, Vetrivel S, Anthea B, Catalytic oxidative transformation of benzyl alcohol and cyclohexanol over mesoporous Mn-MCM-41 and Mo-MCM-41 and Mo(Im), Mn-MCM-41 molecular sieves, Ind. J. Chem. Tech. 2004; 11 (2): 248-253.

Zhang QH, Wang Y, Itsuki S, Shishido T, Takehira K, Manganese containing MCM-41 for epoxidation of styrene and stilbene, J. Mol. Catal. A. Chem. 2002; 188 (1-2): 189-200. doi.org/10.1016/S1381-1169(02)00323-0.

Ma HT, Yuan ZY, Wang Y, Bao XH, Temperature programmed surface reaction study on C2-oxygenate synthesis over SiO2 and nanoporous zeolitic material supported Rh-Mn catalysts, Surf. Inter. Anal. 2001; 32 (1): 224-227. doi.org/10.1002/sia.1042.

(a) Reddy KM, Moudrakovski I, Sayari A, Synthesis of mesoporous vanadium silicate molecular sieves, J. Chem. Soc. Chem. Commun. 1994; 1059-1060. doi:10.1039/C39940001059 (b) Guru TVSPVS, Krishna V, Rajesh E, Efficacy of cobalt-incorporated mesoporous silica toward photodegradation of Alizarin Red S and its kinetic study, J. Chin. Chem. Soc. 2020; 68 (4): 592-600. doi: 10.1002/jccs.202000335.

Ma Y, Tong W, Zhou H, Suib SL, A review of zeolite-like porous materials, Micropor. Mesopor. Mater. 2000; 37 (1-2): 243-252. doi.org/10.1016/S1387-1811(99)00199-7.

Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc. 1998; 279 (5350): 548-552.

Petrini G, Cesana A, Alberti G De, Geroni F, Leofanti G, Padovan M, Paparatto G, Rofia P, Deactivation phenomena on Ti-Silicalite, Stud. Surf. Sci. Catal. 1991; 68: 761-766. doi.org/10.1016/S0167-2991(08)62710-X.

Selvaraj M, Hoo KB, FTIR studies on selected mesoporous metallosilicate molecular sieves, Chem. Lett. 2005; 34 (9): 1290-1291. doi.org/10.1246/cl.2005.1290.

Czaja M, Lisiecki R, Chrobak A, Sitko R, Mazurak Z, The absorption- and luminescence spectra of Mn3+ in beryl and vesuvianite, Phy. Chem. of Mat. 2018; 45: 475-488. doi.org/10.1007/s00269-017-0934-x.

Sekhar RS, Douglas SP, Graphene oxide–nano-titania composites for efficient photocatalytic degradation of indigo carmine, J Chin Chem Soc. 2018; 65 (12): 1423-1430. doi.org/10.1002/jccs.201800154

Birtalan E, Rudat B, Kolmel DK, Fritz D, Vollrath SB, Schepers U, Brase S, Investigating Rhodamine B –labeled peptoids: scopes and limitations of its applications. Biopolymers, 2011; 96 (5): 694-701. doi.org/10.1002/bip.21617.

Sekhar RS, Douglas SP, Efficient Removal of Nitrogen based Industrial Pollutants by Graphene Oxide Coupled Nanotitania Composite under Visible Light Illumination, J. Environ. Treat. Tech. 2021; 9(1): 183-191. doi.org/10.47277/JETT/9(1)191.

Ozkan A, Ozkan MH, Gurkan R, Akcay M, Sokmen M Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation: the effects of some inorganic anions on the photocatalysis, J. Photochem. Photobiol. A, 2004; 163 (1-2): 29-35. doi.org/10.1016/S1010-6030(03)00426-X.

Kumar S, Surendar T, Baruah A, Shanker V, Synthesis of novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem. A, 2013; 1 (17): 5333–5340. doi.org/10.1039/C3TA00186E.

Liu T, Wang L, Lu X, Fan J, Cai X, Gao B, Miao R, Wang J, Yongtao L, Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways, RSC Adv., 2017; 7: 12292-12300. doi: 10.1039/C7RA00199A

Kumar S, Baruah A, Surendar T, Kumar B, Shanker V, Sreedhar B, Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core–shell nanoplates with excellent visible-light responsive photocatalysis, Nanoscale, 2014; 6: 4830–4842. doi.org/10.1039/C3NR05271K.

C.C. Leznoff, A.B.P. Lever, Vol. 1, VCH, New York, NY, 1989, p. XII.

How to Cite
Ranga Rao, P., & Sanasi, P. (2021). Exploring the Photocatalytic Activity of Mn & Al Incorporated MCM-41 towards the Removal of Rhodamine B and Congo Red Dyes under Visible Light and their Kinetic Study. Journal of Environmental Treatment Techniques, 10(1), 1-9. https://doi.org/10.47277//JETT/10(1)9
Fast publication process